We consider problems where many, somewhat redundant, hypotheses are tested and we are interested in reporting the most precise rejections, with false discovery rate (FDR) control. For example, a common goal in genetics is to identify DNA variants that carry distinct information on a trait of interest. However, strong local dependencies between nearby variants make it challenging to distinguish which of the many correlated features most directly influence the phenotype. A common solution is then to identify sets of variants that cover the truly important ones. Depending on the signal strengths, it is possible to resolve the individual variant contributions with more or less precision. Assuring FDR control on the reported findings with these adaptive searches is, however, often impossible. To design a multiple comparison procedure that allows for an adaptive choice of resolution with FDR control, we leverage e-values and linear programming. We adapt this approach to problems where knockoffs and group knockoffs have been successfully applied to test conditional independence hypotheses. We demonstrate its efficacy by analyzing data from the UK Biobank.
Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.
The objective of topic inference in research proposals aims to obtain the most suitable disciplinary division from the discipline system defined by a funding agency. The agency will subsequently find appropriate peer review experts from their database based on this division. Automated topic inference can reduce human errors caused by manual topic filling, bridge the knowledge gap between funding agencies and project applicants, and improve system efficiency. Existing methods focus on modeling this as a hierarchical multi-label classification problem, using generative models to iteratively infer the most appropriate topic information. However, these methods overlook the gap in scale between interdisciplinary research proposals and non-interdisciplinary ones, leading to an unjust phenomenon where the automated inference system categorizes interdisciplinary proposals as non-interdisciplinary, causing unfairness during the expert assignment. How can we address this data imbalance issue under a complex discipline system and hence resolve this unfairness? In this paper, we implement a topic label inference system based on a Transformer encoder-decoder architecture. Furthermore, we utilize interpolation techniques to create a series of pseudo-interdisciplinary proposals from non-interdisciplinary ones during training based on non-parametric indicators such as cross-topic probabilities and topic occurrence probabilities. This approach aims to reduce the bias of the system during model training. Finally, we conduct extensive experiments on a real-world dataset to verify the effectiveness of the proposed method. The experimental results demonstrate that our training strategy can significantly mitigate the unfairness generated in the topic inference task.
Benefiting from the development of deep learning, text-to-speech (TTS) techniques using clean speech have achieved significant performance improvements. The data collected from real scenes often contains noise and generally needs to be denoised by speech enhancement models. Noise-robust TTS models are often trained using the enhanced speech, which thus suffer from speech distortion and background noise that affect the quality of the synthesized speech. Meanwhile, it was shown that self-supervised pre-trained models exhibit excellent noise robustness on many speech tasks, implying that the learned representation has a better tolerance for noise perturbations. In this work, we therefore explore pre-trained models to improve the noise robustness of TTS models. Based on HiFi-GAN, we first propose a representation-to-waveform vocoder, which aims to learn to map the representation of pre-trained models to the waveform. We then propose a text-to-representation FastSpeech2 model, which aims to learn to map text to pre-trained model representations. Experimental results on the LJSpeech and LibriTTS datasets show that our method outperforms those using speech enhancement methods in both subjective and objective metrics. Audio samples are available at: //zqs01.github.io/rep2wav.
I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of $n$ letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in $n$ steps. Meanwhile, the mastermind number, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length $\omega$ over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC, for it is provably equal to the eventually different number $\frak{d}({\neq^*})$, which is the same as the covering number of the meager ideal $\text{cov}(\mathcal{M})$. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.
Polyp segmentation has recently garnered significant attention, and multiple methods have been formulated to achieve commendable outcomes. However, these techniques often confront difficulty when working with the complex polyp foreground and their surrounding regions because of the nature of convolution operation. Besides, most existing methods forget to exploit the potential information from multiple decoder stages. To address this challenge, we suggest combining MetaFormer, introduced as a baseline for integrating CNN and Transformer, with UNet framework and incorporating our Multi-scale Upsampling block (MU). This simple module makes it possible to combine multi-level information by exploring multiple receptive field paths of the shallow decoder stage and then adding with the higher stage to aggregate better feature representation, which is essential in medical image segmentation. Taken all together, we propose MetaFormer Multi-scale Upsampling Network (M$^2$UNet) for the polyp segmentation task. Extensive experiments on five benchmark datasets demonstrate that our method achieved competitive performance compared with several previous methods.
Nowadays, research into personalization has been focusing on explainability and fairness. Several approaches proposed in recent works are able to explain individual recommendations in a post-hoc manner or by explanation paths. However, explainability techniques applied to unfairness in recommendation have been limited to finding user/item features mostly related to biased recommendations. In this paper, we devised a novel algorithm that leverages counterfactuality methods to discover user unfairness explanations in the form of user-item interactions. In our counterfactual framework, interactions are represented as edges in a bipartite graph, with users and items as nodes. Our Bipartite Graph Explainer perturbs the topological structure to find an altered version (counterfactual explanation) that minimizes the disparity in utility between the protected and unprotected demographic groups. Experiments on four real-world graphs coming from various domains showed that our method can systematically explain user unfairness on three state-of-the-art GNN-based recommendation models. Moreover, an empirical evaluation of the perturbed network uncovered relevant patterns that justify the nature of the unfairness discovered by the generated explanations. The source code and the preprocessed data sets are available at //github.com/jackmedda/RS-BGExplainer.
We provide a new sequent calculus that enjoys syntactic cut-elimination and strongly terminating backward proof search for the intuitionistic Strong L\"ob logic $\sf{iSL}$, an intuitionistic modal logic with a provability interpretation. A novel measure on sequents is used to prove both the termination of the naive backward proof search strategy, and the admissibility of cut in a syntactic and direct way, leading to a straightforward cut-elimination procedure. All proofs have been formalised in the interactive theorem prover Coq.
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper leads to a derivation of the latent variable proximal point (LVPP) algorithm: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.