Transformers have recently emerged as a significant force in the field of image deraining. Existing image deraining methods utilize extensive research on self-attention. Though showcasing impressive results, they tend to neglect critical frequency information, as self-attention is generally less adept at capturing high-frequency details. To overcome this shortcoming, we have developed an innovative Dual-Path Coupled Deraining Network (DPCNet) that integrates information from both spatial and frequency domains through Spatial Feature Extraction Block (SFEBlock) and Frequency Feature Extraction Block (FFEBlock). We have further introduced an effective Adaptive Fusion Module (AFM) for the dual-path feature aggregation. Extensive experiments on six public deraining benchmarks and downstream vision tasks have demonstrated that our proposed method not only outperforms the existing state-of-the-art deraining method but also achieves visually pleasuring results with excellent robustness on downstream vision tasks.
Calibrating robots into their workspaces is crucial for manipulation tasks. Existing calibration techniques often rely on sensors external to the robot (cameras, laser scanners, etc.) or specialized tools. This reliance complicates the calibration process and increases the costs and time requirements. Furthermore, the associated setup and measurement procedures require significant human intervention, which makes them more challenging to operate. Using the built-in force-torque sensors, which are nowadays a default component in collaborative robots, this work proposes a self-calibration framework where robot-environmental spatial relations are automatically estimated through compliant exploratory actions by the robot itself. The self-calibration approach converges, verifies its own accuracy, and terminates upon completion, autonomously purely through interactive exploration of the environment's geometries. Extensive experiments validate the effectiveness of our self-calibration approach in accurately establishing the robot-environment spatial relationships without the need for additional sensing equipment or any human intervention.
Visible-Infrared Person Re-identification (VI-ReID) is a challenging cross-modal pedestrian retrieval task, due to significant intra-class variations and cross-modal discrepancies among different cameras. Existing works mainly focus on embedding images of different modalities into a unified space to mine modality-shared features. They only seek distinctive information within these shared features, while ignoring the identity-aware useful information that is implicit in the modality-specific features. To address this issue, we propose a novel Implicit Discriminative Knowledge Learning (IDKL) network to uncover and leverage the implicit discriminative information contained within the modality-specific. First, we extract modality-specific and modality-shared features using a novel dual-stream network. Then, the modality-specific features undergo purification to reduce their modality style discrepancies while preserving identity-aware discriminative knowledge. Subsequently, this kind of implicit knowledge is distilled into the modality-shared feature to enhance its distinctiveness. Finally, an alignment loss is proposed to minimize modality discrepancy on enhanced modality-shared features. Extensive experiments on multiple public datasets demonstrate the superiority of IDKL network over the state-of-the-art methods. Code is available at //github.com/1KK077/IDKL.
The ultimate goal of Dataset Distillation is to synthesize a small synthetic dataset such that a model trained on this synthetic set will perform equally well as a model trained on the full, real dataset. Until now, no method of Dataset Distillation has reached this completely lossless goal, in part due to the fact that previous methods only remain effective when the total number of synthetic samples is extremely small. Since only so much information can be contained in such a small number of samples, it seems that to achieve truly loss dataset distillation, we must develop a distillation method that remains effective as the size of the synthetic dataset grows. In this work, we present such an algorithm and elucidate why existing methods fail to generate larger, high-quality synthetic sets. Current state-of-the-art methods rely on trajectory-matching, or optimizing the synthetic data to induce similar long-term training dynamics as the real data. We empirically find that the training stage of the trajectories we choose to match (i.e., early or late) greatly affects the effectiveness of the distilled dataset. Specifically, early trajectories (where the teacher network learns easy patterns) work well for a low-cardinality synthetic set since there are fewer examples wherein to distribute the necessary information. Conversely, late trajectories (where the teacher network learns hard patterns) provide better signals for larger synthetic sets since there are now enough samples to represent the necessary complex patterns. Based on our findings, we propose to align the difficulty of the generated patterns with the size of the synthetic dataset. In doing so, we successfully scale trajectory matching-based methods to larger synthetic datasets, achieving lossless dataset distillation for the very first time. Code and distilled datasets are available at //gzyaftermath.github.io/DATM.
A novel optimization procedure for the generation of stability polynomials of stabilized explicit Runge-Kutta methods is devised. Intended for semidiscretizations of hyperbolic partial differential equations, the herein developed approach allows the optimization of stability polynomials with more than hundred stages. A potential application of these high degree stability polynomials are problems with locally varying characteristic speeds as found in non-uniformly refined meshes and different wave speeds. To demonstrate the applicability of the stability polynomials we construct 2N storage many-stage Runge-Kutta methods that match their designed second order of accuracy when applied to a range of linear and nonlinear hyperbolic PDEs with smooth solutions. The methods are constructed to reduce the amplification of round off errors which becomes a significant concern for these many-stage methods.
The advent of ChatGPT has sparked over a year of regulatory frenzy. However, few existing studies have rigorously questioned the assumption that, if left unregulated, AI chatbot's output would inflict tangible, severe real harm on human affairs. Most researchers have overlooked the critical possibility that the information market itself can effectively mitigate these risks and, as a result, they tend to use regulatory tools to address the issue directly. This Article develops a yardstick for reevaluating both AI-related content risks and corresponding regulatory proposals by focusing on inter-informational competition among various outlets. The decades-long history of regulating information and communications technologies indicates that regulators tend to err too much on the side of caution and to put forward excessive regulatory measures when encountering the uncertainties brought about by new technologies. In fact, a trove of empirical evidence has demonstrated that market competition among information outlets can effectively mitigate most risks and that overreliance on regulation is not only unnecessary but detrimental, as well. This Article argues that sufficient competition among chatbots and other information outlets in the information marketplace can sufficiently mitigate and even resolve most content risks posed by generative AI technologies. This renders certain loudly advocated regulatory strategies, like mandatory prohibitions, licensure, curation of datasets, and notice-and-response regimes, truly unnecessary and even toxic to desirable competition and innovation throughout the AI industry. Ultimately, the ideas that I advance in this Article should pour some much-needed cold water on the regulatory frenzy over generative AI and steer the issue back to a rational track.
Image segmentation is one of the most fundamental problems in computer vision and has drawn a lot of attentions due to its vast applications in image understanding and autonomous driving. However, designing effective and efficient segmentation neural architectures is a labor-intensive process that may require lots of trials by human experts. In this paper, we address the challenge of integrating multi-head self-attention into high resolution representation CNNs efficiently, by leveraging architecture search. Manually replacing convolution layers with multi-head self-attention is non-trivial due to the costly overhead in memory to maintain high resolution. By contrast, we develop a multi-target multi-branch supernet method, which not only fully utilizes the advantages of high-resolution features, but also finds the proper location for placing multi-head self-attention module. Our search algorithm is optimized towards multiple objective s (e.g., latency and mIoU) and capable of finding architectures on Pareto frontier with arbitrary number of branches in a single search. We further present a series of model via Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searched for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers between branches from different resolutions and fuse to high resolution for both efficiency and effectiveness. Extensive experiments demonstrate that HyCTAS outperforms previous methods on semantic segmentation task. Code and models are available at \url{//github.com/MarvinYu1995/HyCTAS}.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.