亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quantum walk dynamics obey the laws of quantum mechanics with an extra locality constraint, which demands that the evolution operator is local in the sense that the walker must visit the neighboring locations before endeavoring to distant places. Usually, the Hamiltonian is obtained from either the adjacency or the laplacian matrix of the graph and the walker hops from vertices to neighboring vertices. In this work, we define a version of the continuous-time quantum walk that allows the walker to hop from vertices to edges and vice versa. As an application, we analyze the spatial search algorithm on the complete bipartite graph by modifying the new version of the Hamiltonian with an extra term that depends on the location of the marked vertex or marked edge, similar to what is done in the standard continuous-time quantum walk model. We show that the optimal running time to find either a vertex or an edge is $O(\sqrt{N_e})$ with success probability $1+o(1)$, where $N_e$ is the number of edges of the complete bipartite graph.

相關內容

In this article, we propose general criteria to construct optimal atomic centered basis sets in quantum chemistry. We focus in particular on two criteria, one based on the ground-state one-body density matrix of the system and the other based on the ground-state energy. The performance of these two criteria are then numerically tested and compared on a parametrized eigenvalue problem, which corresponds to a one-dimensional toy version of the ground-state dissociation of a diatomic molecule.

In recent years there has been a growing interest in reconfigurable intelligent surfaces (RISs) as enablers for the realization of smart radio propagation environments which can provide performance improvements with low energy consumption in future wireless networks. However, to reap the potential gains of RIS it is crucial to jointly design both the transmit precoder and the phases of the RIS elements. Within this context, in this paper we study the use of multiple RIS panels in a parallel or multi-hop configuration with the aim of assisting a multi-stream multiple-input multiple-output (MIMO) communication. To solve the nonconvex joint optimization problem of the precoder and RIS elements targeted at maximizing the achievable rate, we propose an iterative algorithm based on the monotone accelerated proximal gradient (mAPG) method which includes an extrapolation step for improving the convergence speed and monitoring variables for ensuring sufficient descent of the algorithm. Based on the sufficient descent property we then present a detailed convergence analysis of the algorithm which includes expressions for the step size. Simulation results in different scenarios show that, besides being effective, the proposed approach can often achieve higher rates than other benchmarked schemes.

Sharing economy has become a socio-economic trend in transportation and housing sectors. It develops business models leveraging underutilized resources. Like those sectors, power grid is also becoming smarter with many flexible resources, and researchers are investigating the impact of sharing resources here as well that can help to reduce cost and extract value. In this work, we investigate sharing of energy storage devices among individual households in a cooperative fashion. Coalitional game theory is used to model the scenario where utility company imposes time-of-use (ToU) price and net metering billing mechanism. The resulting game has a non-empty core and we can develop a cost allocation mechanism in the core with easy to compute analytical formula. A mechanism for sharing the excess energy under the peer to peer network (P2P) is also developed. Thus sharing electricity generated by storage devices among consumers can be effective in this set-up. Our simulation results also validate the theoretical claim.

The random batch method provides an efficient algorithm for computing statistical properties of a canonical ensemble of interacting particles. In this work, we study the error estimates of the fully discrete random batch method, especially in terms of approximating the invariant distribution. Using a triangle inequality framework, we show that the long-time error of the method is $O(\sqrt{\tau} + e^{-\gamma t})$, where $\tau$ is the time step and $\gamma$ is the convergence rate which does not depend on the time step $\tau$ or the number of particles $N$. Our results also apply to the McKean-Vlasov process, which is the mean-field limit of the interacting particle system as the number of particles $N\rightarrow\infty$.

We study \textit{rescaled gradient dynamical systems} in a Hilbert space $\mathcal{H}$, where implicit discretization in a finite-dimensional Euclidean space leads to high-order methods for solving monotone equations (MEs). Our framework can be interpreted as a natural generalization of celebrated dual extrapolation method~\citep{Nesterov-2007-Dual} from first order to high order via appeal to the regularization toolbox of optimization theory~\citep{Nesterov-2021-Implementable, Nesterov-2021-Inexact}. More specifically, we establish the existence and uniqueness of a global solution and analyze the convergence properties of solution trajectories. We also present discrete-time counterparts of our high-order continuous-time methods, and we show that the $p^{th}$-order method achieves an ergodic rate of $O(k^{-(p+1)/2})$ in terms of a restricted merit function and a pointwise rate of $O(k^{-p/2})$ in terms of a residue function. Under regularity conditions, the restarted version of $p^{th}$-order methods achieves local convergence with the order $p \geq 2$. Notably, our methods are \textit{optimal} since they have matched the lower bound established for solving the monotone equation problems under a standard linear span assumption~\citep{Lin-2022-Perseus}.

Reconfigurable intelligent surface (RIS) is a promising technique to enhance the performance of physical-layer key generation (PKG) due to its ability to smartly customize the radio environments. Existing RIS-assisted PKG methods are mainly based on the idealistic assumption of an independent and identically distributed (i.i.d.) channel model at both the transmitter and the RIS. However, the i.i.d. model is inaccurate for a typical RIS in an isotropic scattering environment. Also, neglecting the existence of channel spatial correlation would degrade the PKG performance. In this paper, we establish a general spatially correlated channel model in multi-antenna systems and propose a new PKG framework based on the transmit and the reflective beamforming at the base station (BS) and the RIS. Specifically, we derive a closed-form expression for characterizing the key generation rate (KGR) and obtain a globally optimal solution of the beamformers to maximize the KGR. Furthermore, we analyze the KGR performance difference between the one adopting the assumption of the i.i.d. model and that of the spatially correlated model. It is found that the beamforming designed for the correlated model outperforms that for the i.i.d. model while the KGR gain increases with the channel correlation. Simulation results show that compared to existing methods based on the i.i.d. fading model, our proposed method achieves about $5$ dB performance gain when the BS antenna correlation $\rho$ is $0.3$ and the RIS element spacing is half of the wavelength.

The design of numerical approximations of the Cahn-Hilliard model preserving the maximum principle is a challenging problem, even more if considering additional transport terms. In this work we present a new upwind Discontinuous Galerkin scheme for the convective Cahn-Hilliard model with degenerate mobility which preserves the maximum principle and prevents non-physical spurious oscillations. Furthermore, we show some numerical experiments in agreement with the previous theoretical results. Finally, numerical comparisons with other schemes found in the literature are also carried out.

We describe a simple quantum algorithm for preparing $K$ copies of an $N$-dimensional quantum state whose amplitudes are given by a quantum oracle. Our result extends a previous work of Grover, who showed how to prepare one copy in time $O(\sqrt{N})$. In comparison with the naive $O(K\sqrt{N})$ solution obtained by repeating this procedure~$K$ times, our algorithm achieves the optimal running time of $\theta(\sqrt{KN})$. Our technique uses a refinement of the quantum rejection sampling method employed by Grover. As a direct application, we obtain a similar speed-up for obtaining $K$ independent samples from a distribution whose probability vector is given by a quantum oracle.

Volatility clustering is a common phenomenon in financial time series. Typically, linear models can be used to describe the temporal autocorrelation of the (logarithmic) variance of returns. Considering the difficulty in estimating this model, we construct a Dynamic Bayesian Network, which utilizes the conjugate prior relation of normal-gamma and gamma-gamma, so that its posterior form locally remains unchanged at each node. This makes it possible to find approximate solutions using variational methods quickly. Furthermore, we ensure that the volatility expressed by the model is an independent incremental process after inserting dummy gamma nodes between adjacent time steps. We have found that this model has two advantages: 1) It can be proved that it can express heavier tails than Gaussians, i.e., have positive excess kurtosis, compared to popular linear models. 2) If the variational inference(VI) is used for state estimation, it runs much faster than Monte Carlo(MC) methods since the calculation of the posterior uses only basic arithmetic operations. And its convergence process is deterministic. We tested the model, named Gam-Chain, using recent Crypto, Nasdaq, and Forex records of varying resolutions. The results show that: 1) In the same case of using MC, this model can achieve comparable state estimation results with the regular lognormal chain. 2) In the case of only using VI, this model can obtain accuracy that are slightly worse than MC, but still acceptable in practice; 3) Only using VI, the running time of Gam-Chain, under the most conservative settings, can be reduced to below 20% of that based on the lognormal chain via MC.

Implicit Processes (IPs) represent a flexible framework that can be used to describe a wide variety of models, from Bayesian neural networks, neural samplers and data generators to many others. IPs also allow for approximate inference in function-space. This change of formulation solves intrinsic degenerate problems of parameter-space approximate inference concerning the high number of parameters and their strong dependencies in large models. For this, previous works in the literature have attempted to employ IPs both to set up the prior and to approximate the resulting posterior. However, this has proven to be a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot tune the prior IP to the observed data. We propose here the first method that can accomplish both goals. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.

北京阿比特科技有限公司