Utilizing spherical harmonic (SH) domain has been established as the default method of obtaining continuity over space in head-related transfer functions (HRTFs). This paper concerns different variants of extending this solution by replacing SHs with four-dimensional (4D) continuous functional models in which frequency is imagined as another physical dimension. Recently developed hyperspherical harmonic (HSH) representation is compared with models defined in spherindrical coordinate system by merging SHs with one-dimensional basis functions. The efficiency of both approaches is evaluated based on the reproduction errors for individual HRTFs from HUTUBS database, including detailed analysis of its dependency on chosen orders of approximation in frequency and space. Employing continuous functional models defined in 4D coordinate systems allows HRTF magnitude spectra to be expressed as a small set of coefficients which can be decoded back into values at any direction and frequency. The best performance was noted for HSHs and SHs merged with reverse Fourier-Bessel series, with the former featuring better compression abilities, achieving slightly higher accuracy for low number of coefficients. The presented models can serve multiple purposes, such as interpolation, compression or parametrization for machine learning applications, and can be applied not only to HRTFs but also to other types of directivity functions, e.g. sound source directivity.
Reinforcement learning of real-world tasks is very data inefficient, and extensive simulation-based modelling has become the dominant approach for training systems. However, in human-robot interaction and many other real-world settings, there is no appropriate one-model-for-all due to differences in individual instances of the system (e.g. different people) or necessary oversimplifications in the simulation models. This requires two approaches: 1. either learning the individual system's dynamics approximately from data which requires data-intensive training or 2. using a complete digital twin of the instances, which may not be realisable in many cases. We introduce two approaches: co-kriging adjustments (CKA) and ridge regression adjustment (RRA) as novel ways to combine the advantages of both approaches. Our adjustment methods are based on an auto-regressive AR1 co-kriging model that we integrate with GP priors. This yield a data- and simulation-efficient way of using simplistic simulation models (e.g., simple two-link model) and rapidly adapting them to individual instances (e.g., biomechanics of individual people). Using CKA and RRA, we obtain more accurate uncertainty quantification of the entire system's dynamics than pure GP-based and AR1 methods. We demonstrate the efficiency of co-kriging adjustment with an interpretable reinforcement learning control example, learning to control a biomechanical human arm using only a two-link arm simulation model (offline part) and CKA derived from a small amount of interaction data (on-the-fly online). Our method unlocks an efficient and uncertainty-aware way to implement reinforcement learning methods in real world complex systems for which only imperfect simulation models exist.
In this paper, we present a discontinuity and cusp capturing physics-informed neural network (PINN) to solve Stokes equations with a piecewise-constant viscosity and singular force along an interface. We first reformulate the governing equations in each fluid domain separately and replace the singular force effect with the traction balance equation between solutions in two sides along the interface. Since the pressure is discontinuous and the velocity has discontinuous derivatives across the interface, we hereby use a network consisting of two fully-connected sub-networks that approximate the pressure and velocity, respectively. The two sub-networks share the same primary coordinate input arguments but with different augmented feature inputs. These two augmented inputs provide the interface information, so we assume that a level set function is given and its zero level set indicates the position of the interface. The pressure sub-network uses an indicator function as an augmented input to capture the function discontinuity, while the velocity sub-network uses a cusp-enforced level set function to capture the derivative discontinuities via the traction balance equation. We perform a series of numerical experiments to solve two- and three-dimensional Stokes interface problems and perform an accuracy comparison with the augmented immersed interface methods in literature. Our results indicate that even a shallow network with a moderate number of neurons and sufficient training data points can achieve prediction accuracy comparable to that of immersed interface methods.
In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-$C^1$, Analysis-Suitable $G^1$ and the Approximate $C^1$ constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate $C^1$ and Analysis-Suitable $G^1$ converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-$C^1$ and D-Patch provide relatively easy construction on complex geometries. The Almost-$C^1$ method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate $C^1$ and Analysis-Suitable $G^1$ applicable to more complex geometries.
It is disproved the Tokareva's conjecture that any balanced boolean function of appropriate degree is a derivative of some bent function. This result is based on new upper bounds for the numbers of bent and plateaued functions.
The semi-empirical nature of best-estimate models closing the balance equations of thermal-hydraulic (TH) system codes is well-known as a significant source of uncertainty for accuracy of output predictions. This uncertainty, called model uncertainty, is usually represented by multiplicative (log-)Gaussian variables whose estimation requires solving an inverse problem based on a set of adequately chosen real experiments. One method from the TH field, called CIRCE, addresses it. We present in the paper a generalization of this method to several groups of experiments each having their own properties, including different ranges for input conditions and different geometries. An individual (log-)Gaussian distribution is therefore estimated for each group in order to investigate whether the model uncertainty is homogeneous between the groups, or should depend on the group. To this end, a multi-group CIRCE is proposed where a variance parameter is estimated for each group jointly to a mean parameter common to all the groups to preserve the uniqueness of the best-estimate model. The ECME algorithm for Maximum Likelihood Estimation is adapted to the latter context, then applied to relevant demonstration cases. Finally, it is tested on a practical case to assess the uncertainty of critical mass flow assuming two groups due to the difference of geometry between the experimental setups.
Approximating differential operators defined on two-dimensional surfaces is an important problem that arises in many areas of science and engineering. Over the past ten years, localized meshfree methods based on generalized moving least squares (GMLS) and radial basis function finite differences (RBF-FD) have been shown to be effective for this task as they can give high orders of accuracy at low computational cost, and they can be applied to surfaces defined only by point clouds. However, there have yet to be any studies that perform a direct comparison of these methods for approximating surface differential operators (SDOs). The first purpose of this work is to fill that gap. For this comparison, we focus on an RBF-FD method based on polyharmonic spline kernels and polynomials (PHS+Poly) since they are most closely related to the GMLS method. Additionally, we use a relatively new technique for approximating SDOs with RBF-FD called the tangent plane method since it is simpler than previous techniques and natural to use with PHS+Poly RBF-FD. The second purpose of this work is to relate the tangent plane formulation of SDOs to the local coordinate formulation used in GMLS and to show that they are equivalent when the tangent space to the surface is known exactly. The final purpose is to use ideas from the GMLS SDO formulation to derive a new RBF-FD method for approximating the tangent space for a point cloud surface when it is unknown. For the numerical comparisons of the methods, we examine their convergence rates for approximating the surface gradient, divergence, and Laplacian as the point clouds are refined for various parameter choices. We also compare their efficiency in terms of accuracy per computational cost, both when including and excluding setup costs.
A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network without imposing any differentiability assumptions. Firstly, a tractable approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints and restricting the right-hand side of the constraints with a proper positive parameter, which will be iteratively solved by a random-fixed projection algorithm. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed feasibility. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and populating the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time convergence of the distributed optimization, a distributed termination algorithm is developed based on uniformly local consensus and zeroth-order optimality under uniformly strongly connected graphs. Fourthly, it is proved that the cutting-surface consensus approach converges within a finite number of iterations. Finally, the effectiveness of the approach is illustrated through a numerical example.
A general class of the almost instantaneous fixed-to-variable-length (AIFV) codes is proposed, which contains every possible binary code we can make when allowing finite bits of decoding delay. The contribution of the paper lies in the following. (i) Introducing $N$-bit-delay AIFV codes, constructed by multiple code trees with higher flexibility than the conventional AIFV codes. (ii) Proving that the proposed codes can represent any uniquely-encodable and uniquely-decodable variable-to-variable length codes. (iii) Showing how to express codes as multiple code trees with minimum decoding delay. (iv) Formulating the constraints of decodability as the comparison of intervals in the real number line. The theoretical results in this paper are expected to be useful for further study on AIFV codes.
A novel overlapping domain decomposition splitting algorithm based on a Crank-Nisolson method is developed for the stochastic nonlinear Schroedinger equation driven by a multiplicative noise with non-periodic boundary conditions. The proposed algorithm can significantly reduce the computational cost while maintaining the similar conservation laws. Numerical experiments are dedicated to illustrating the capability of the algorithm for different spatial dimensions, as well as the various initial conditions. In particular, we compare the performance of the overlapping domain decomposition splitting algorithm with the stochastic multi-symplectic method in [S. Jiang, L. Wang and J. Hong, Commun. Comput. Phys., 2013] and the finite difference splitting scheme in [J. Cui, J. Hong, Z. Liu and W. Zhou, J. Differ. Equ., 2019]. We observe that our proposed algorithm has excellent computational efficiency and is highly competitive. It provides a useful tool for solving stochastic partial differential equations.
The utility of reinforcement learning is limited by the alignment of reward functions with the interests of human stakeholders. One promising method for alignment is to learn the reward function from human-generated preferences between pairs of trajectory segments, a type of reinforcement learning from human feedback (RLHF). These human preferences are typically assumed to be informed solely by partial return, the sum of rewards along each segment. We find this assumption to be flawed and propose modeling human preferences instead as informed by each segment's regret, a measure of a segment's deviation from optimal decision-making. Given infinitely many preferences generated according to regret, we prove that we can identify a reward function equivalent to the reward function that generated those preferences, and we prove that the previous partial return model lacks this identifiability property in multiple contexts. We empirically show that our proposed regret preference model outperforms the partial return preference model with finite training data in otherwise the same setting. Additionally, we find that our proposed regret preference model better predicts real human preferences and also learns reward functions from these preferences that lead to policies that are better human-aligned. Overall, this work establishes that the choice of preference model is impactful, and our proposed regret preference model provides an improvement upon a core assumption of recent research. We have open sourced our experimental code, the human preferences dataset we gathered, and our training and preference elicitation interfaces for gathering a such a dataset.