We develop a fully Bayesian nonparametric regression model based on a L\'evy process prior named MLABS (Multivariate L\'evy Adaptive B-Spline regression) model, a multivariate version of the LARK (L\'evy Adaptive Regression Kernels) models, for estimating unknown functions with either varying degrees of smoothness or high interaction orders. L\'evy process priors have advantages of encouraging sparsity in the expansions and providing automatic selection over the number of basis functions. The unknown regression function is expressed as a weighted sum of tensor product of B-spline basis functions as the elements of an overcomplete system, which can deal with multi-dimensional data. The B-spline basis can express systematically functions with varying degrees of smoothness. By changing a set of degrees of the tensor product basis function, MLABS can adapt the smoothness of target functions due to the nice properties of B-spline bases. The local support of the B-spline basis enables the MLABS to make more delicate predictions than other existing methods in the two-dimensional surface data. Experiments on various simulated and real-world datasets illustrate that the MLABS model has comparable performance on regression and classification problems. We also show that the MLABS model has more stable and accurate predictive abilities than state-of-the-art nonparametric regression models in relatively low-dimensional data.
Compared to the nominal scale, the ordinal scale for a categorical outcome variable has the property of making a monotonicity assumption for the covariate effects meaningful. This assumption is encoded in the commonly used proportional odds model, but there it is combined with other parametric assumptions such as linearity and additivity. Herein, the considered models are non-parametric and the only condition imposed is that the effects of the covariates on the outcome categories are stochastically monotone according to the ordinal scale. We are not aware of the existence of other comparable multivariable models that would be suitable for inference purposes. We generalize our previously proposed Bayesian monotonic multivariable regression model to ordinal outcomes, and propose an estimation procedure based on reversible jump Markov chain Monte Carlo. The model is based on a marked point process construction, which allows it to approximate arbitrary monotonic regression function shapes, and has a built-in covariate selection property. We study the performance of the proposed approach through extensive simulation studies, and demonstrate its practical application in two real data examples.
In this paper, we study the properties of nonparametric least squares regression using deep neural networks. We derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer for feedforward deep neural regression. Our error bounds achieve minimax optimal rate and significantly improve over the existing ones in the sense that they depend polynomially on the dimension of the predictor, instead of exponentially on dimension. We show that the neural regression estimator can circumvent the curse of dimensionality under the assumption that the predictor is supported on an approximate low-dimensional manifold or a set with low Minkowski dimension. These assumptions differ from the structural condition imposed on the target regression function and are weaker and more realistic than the exact low-dimensional manifold support assumption. We investigate how the prediction error of the neural regression estimator depends on the structure of neural networks and propose a notion of network relative efficiency between two types of neural networks, which provides a quantitative measure for evaluating the relative merits of different network structures. To establish these results, we derive a novel approximation error bound for the H\"older smooth functions with a positive smoothness index using ReLU activated neural networks, which may be of independent interest. Our results are derived under weaker assumptions on the data distribution and the neural network structure than those in the existing literature.
We study random design linear regression with no assumptions on the distribution of the covariates and with a heavy-tailed response variable. In this distribution-free regression setting, we show that boundedness of the conditional second moment of the response given the covariates is a necessary and sufficient condition for achieving nontrivial guarantees. As a starting point, we prove an optimal version of the classical in-expectation bound for the truncated least squares estimator due to Gy\"{o}rfi, Kohler, Krzy\.{z}ak, and Walk. However, we show that this procedure fails with constant probability for some distributions despite its optimal in-expectation performance. Then, combining the ideas of truncated least squares, median-of-means procedures, and aggregation theory, we construct a non-linear estimator achieving excess risk of order $d/n$ with an optimal sub-exponential tail. While existing approaches to linear regression for heavy-tailed distributions focus on proper estimators that return linear functions, we highlight that the improperness of our procedure is necessary for attaining nontrivial guarantees in the distribution-free setting.
We consider the problem of testing for long-range dependence for time-varying coefficient regression models. The covariates and errors are assumed to be locally stationary, which allows complex temporal dynamics and heteroscedasticity. We develop KPSS, R/S, V/S, and K/S-type statistics based on the nonparametric residuals, and propose bootstrap approaches equipped with a difference-based long-run covariance matrix estimator for practical implementation. Under the null hypothesis, the local alternatives as well as the fixed alternatives, we derive the limiting distributions of the test statistics, establish the uniform consistency of the difference-based long-run covariance estimator, and justify the bootstrap algorithms theoretically. In particular, the exact local asymptotic power of our testing procedure enjoys the order $O( \log^{-1} n)$, the same as that of the classical KPSS test for long memory in strictly stationary series without covariates. We demonstrate the effectiveness of our tests by extensive simulation studies. The proposed tests are applied to a COVID-19 dataset in favor of long-range dependence in the cumulative confirmed series of COVID-19 in several countries, and to the Hong Kong circulatory and respiratory dataset, identifying a new type of 'spurious long memory'.
Robust statistical data modelling under potential model mis-specification often requires leaving the parametric world for the nonparametric. In the latter, parameters are infinite dimensional objects such as functions, probability distributions or infinite vectors. In the Bayesian nonparametric approach, prior distributions are designed for these parameters, which provide a handle to manage the complexity of nonparametric models in practice. However, most modern Bayesian nonparametric models seem often out of reach to practitioners, as inference algorithms need careful design to deal with the infinite number of parameters. The aim of this work is to facilitate the journey by providing computational tools for Bayesian nonparametric inference. The article describes a set of functions available in the \R package BNPdensity in order to carry out density estimation with an infinite mixture model, including all types of censored data. The package provides access to a large class of such models based on normalized random measures, which represent a generalization of the popular Dirichlet process mixture. One striking advantage of this generalization is that it offers much more robust priors on the number of clusters than the Dirichlet. Another crucial advantage is the complete flexibility in specifying the prior for the scale and location parameters of the clusters, because conjugacy is not required. Inference is performed using a theoretically grounded approximate sampling methodology known as the Ferguson & Klass algorithm. The package also offers several goodness of fit diagnostics such as QQ-plots, including a cross-validation criterion, the conditional predictive ordinate. The proposed methodology is illustrated on a classical ecological risk assessment method called the Species Sensitivity Distribution (SSD) problem, showcasing the benefits of the Bayesian nonparametric framework.
Doubly truncated data arise in many areas such as astronomy, econometrics, and medical studies. For the regression analysis with doubly truncated response variables, the existence of double truncation may bring bias for estimation as well as affect variable selection. We propose a simultaneous estimation and variable selection procedure for the doubly truncated regression, allowing a diverging number of regression parameters. To remove the bias introduced by the double truncation, a Mann-Whitney-type loss function is used. The adaptive LASSO penalty is then added into the loss function to achieve simultaneous estimation and variable selection. An iterative algorithm is designed to optimize the resulting objective function. We establish the consistency and the asymptotic normality of the proposed estimator. The oracle property of the proposed selection procedure is also obtained. Some simulation studies are conducted to show the finite sample performance of the proposed approach. We also apply the method to analyze a real astronomical data.
The modeling and analysis of degradation data have been an active research area in reliability and system health management. As the senor technology advances, multivariate sensory data are commonly collected for the underlying degradation process. However, most existing research on degradation modeling requires a univariate degradation index to be provided. Thus, constructing a degradation index for multivariate sensory data is a fundamental step in degradation modeling. In this paper, we propose a novel degradation index building method for multivariate sensory data. Based on an additive nonlinear model with variable selection, the proposed method can automatically select the most informative sensor signals to be used in the degradation index. The penalized likelihood method with adaptive group penalty is developed for parameter estimation. We demonstrate that the proposed method outperforms existing methods via both simulation studies and analyses of the NASA jet engine sensor data.
Extreme-value copulas arise as the limiting dependence structure of component-wise maxima. Defined in terms of a functional parameter, they are one of the most widespread copula families due to their flexibility and ability to capture asymmetry. Despite this, meeting the complex analytical properties of this parameter in an unconstrained setting remains a challenge, restricting most uses to models with very few parameters or nonparametric models. In this paper, we focus on the bivariate case and propose a novel approach for estimating this functional parameter in a semiparametric manner. Our procedure relies on a series of transformations, including Williamson's transform and starting from a zero-integral spline. Spline coordinates are fit through maximum likelihood estimation, leveraging gradient optimization, without imposing further constraints. Our method produces efficient and wholly compliant solutions. We successfully conducted several experiments on both simulated and real-world data. Specifically, we test our method on scarce data gathered by the gravitational wave detection LIGO and Virgo collaborations.
In this paper, we are interested in nonparametric kernel estimation of a generalized regression function, including conditional cumulative distribution and conditional quantile functions, based on an incomplete sample $(X_t, Y_t, \zeta_t)_{t\in \mathbb{ R}^+}$ copies of a continuous-time stationary ergodic process $(X, Y, \zeta)$. The predictor $X$ is valued in some infinite-dimensional space, whereas the real-valued process $Y$ is observed when $\zeta= 1$ and missing whenever $\zeta = 0$. Pointwise and uniform consistency (with rates) of these estimators as well as a central limit theorem are established. Conditional bias and asymptotic quadratic error are also provided. Asymptotic and bootstrap-based confidence intervals for the generalized regression function are also discussed. A first simulation study is performed to compare the discrete-time to the continuous-time estimations. A second simulation is also conducted to discuss the selection of the optimal sampling mesh in the continuous-time case. Finally, it is worth noting that our results are stated under ergodic assumption without assuming any classical mixing conditions.
Long Short-Term Memory (LSTM) infers the long term dependency through a cell state maintained by the input and the forget gate structures, which models a gate output as a value in [0,1] through a sigmoid function. However, due to the graduality of the sigmoid function, the sigmoid gate is not flexible in representing multi-modality or skewness. Besides, the previous models lack modeling on the correlation between the gates, which would be a new method to adopt inductive bias for a relationship between previous and current input. This paper proposes a new gate structure with the bivariate Beta distribution. The proposed gate structure enables probabilistic modeling on the gates within the LSTM cell so that the modelers can customize the cell state flow with priors and distributions. Moreover, we theoretically show the higher upper bound of the gradient compared to the sigmoid function, and we empirically observed that the bivariate Beta distribution gate structure provides higher gradient values in training. We demonstrate the effectiveness of bivariate Beta gate structure on the sentence classification, image classification, polyphonic music modeling, and image caption generation.