亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The early phase of training of deep neural networks has a dramatic effect on the local curvature of the loss function. For instance, using a small learning rate does not guarantee stable optimization because the optimization trajectory has a tendency to steer towards regions of the loss surface with increasing local curvature. We ask whether this tendency is connected to the widely observed phenomenon that the choice of the learning rate strongly influences generalization. We first show that stochastic gradient descent (SGD) implicitly penalizes the trace of the Fisher Information Matrix (FIM), a measure of the local curvature, from the beginning of training. We argue it is an implicit regularizer in SGD by showing that explicitly penalizing the trace of the FIM can significantly improve generalization. We highlight that poor final generalization coincides with the trace of the FIM increasing to a large value early in training, to which we refer as catastrophic Fisher explosion. Finally, to gain insight into the regularization effect of penalizing the trace of the FIM, we show that it limits memorization by reducing the learning speed of examples with noisy labels more than that of the clean examples.

相關內容

Suppose we observe an infinite series of coin flips $X_1,X_2,\ldots$, and wish to sequentially test the null that these binary random variables are exchangeable. Nonnegative supermartingales (NSMs) are a workhorse of sequential inference, but we prove that they are powerless for this problem. First, utilizing a geometric concept called fork-convexity (a sequential analog of convexity), we show that any process that is an NSM under a set of distributions, is also necessarily an NSM under their "fork-convex hull". Second, we demonstrate that the fork-convex hull of the exchangeable null consists of all possible laws over binary sequences; this implies that any NSM under exchangeability is necessarily nonincreasing, hence always yields a powerless test for any alternative. Since testing arbitrary deviations from exchangeability is information theoretically impossible, we focus on Markovian alternatives. We combine ideas from universal inference and the method of mixtures to derive a "safe e-process", which is a nonnegative process with expectation at most one under the null at any stopping time, and is upper bounded by a martingale, but is not itself an NSM. This in turn yields a level $\alpha$ sequential test that is consistent; regret bounds from universal coding also demonstrate rate-optimal power. We present ways to extend these results to any finite alphabet and to Markovian alternatives of any order using a "double mixture" approach. We provide an array of simulations, and give general approaches based on betting for unstructured or ill-specified alternatives. Finally, inspired by Shafer, Vovk, and Ville, we provide game-theoretic interpretations of our e-processes and pathwise results.

A common strategy to train deep neural networks (DNNs) is to use very large architectures and to train them until they (almost) achieve zero training error. Empirically observed good generalization performance on test data, even in the presence of lots of label noise, corroborate such a procedure. On the other hand, in statistical learning theory it is known that over-fitting models may lead to poor generalization properties, occurring in e.g. empirical risk minimization (ERM) over too large hypotheses classes. Inspired by this contradictory behavior, so-called interpolation methods have recently received much attention, leading to consistent and optimally learning methods for some local averaging schemes with zero training error. However, there is no theoretical analysis of interpolating ERM-like methods so far. We take a step in this direction by showing that for certain, large hypotheses classes, some interpolating ERMs enjoy very good statistical guarantees while others fail in the worst sense. Moreover, we show that the same phenomenon occurs for DNNs with zero training error and sufficiently large architectures.

We consider parameter estimation in distributed networks, where each sensor in the network observes an independent sample from an underlying distribution and has $k$ bits to communicate its sample to a centralized processor which computes an estimate of a desired parameter. We develop lower bounds for the minimax risk of estimating the underlying parameter for a large class of losses and distributions. Our results show that under mild regularity conditions, the communication constraint reduces the effective sample size by a factor of $d$ when $k$ is small, where $d$ is the dimension of the estimated parameter. Furthermore, this penalty reduces at most exponentially with increasing $k$, which is the case for some models, e.g., estimating high-dimensional distributions. For other models however, we show that the sample size reduction is re-mediated only linearly with increasing $k$, e.g. when some sub-Gaussian structure is available. We apply our results to the distributed setting with product Bernoulli model, multinomial model, Gaussian location models, and logistic regression which recover or strengthen existing results. Our approach significantly deviates from existing approaches for developing information-theoretic lower bounds for communication-efficient estimation. We circumvent the need for strong data processing inequalities used in prior work and develop a geometric approach which builds on a new representation of the communication constraint. This approach allows us to strengthen and generalize existing results with simpler and more transparent proofs.

Recent theoretical results show that gradient descent on deep neural networks under exponential loss functions locally maximizes classification margin, which is equivalent to minimizing the norm of the weight matrices under margin constraints. This property of the solution however does not fully characterize the generalization performance. We motivate theoretically and show empirically that the area under the curve of the margin distribution on the training set is in fact a good measure of generalization. We then show that, after data separation is achieved, it is possible to dynamically reduce the training set by more than 99% without significant loss of performance. Interestingly, the resulting subset of "high capacity" features is not consistent across different training runs, which is consistent with the theoretical claim that all training points should converge to the same asymptotic margin under SGD and in the presence of both batch normalization and weight decay.

Memorization studies of deep neural networks (DNNs) help to understand what patterns and how do DNNs learn, and motivate improvements to DNN training approaches. In this work, we investigate the memorization properties of SimCLR, a widely used contrastive self-supervised learning approach, and compare them to the memorization of supervised learning and random labels training. We find that both training objects and augmentations may have different complexity in the sense of how SimCLR learns them. Moreover, we show that SimCLR is similar to random labels training in terms of the distribution of training objects complexity.

We study the generalization properties of the popular stochastic optimization method known as stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main contribution is providing upper bounds on the generalization error that depend on local statistics of the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our bounds depend on are the variance of the gradients (with respect to the data distribution) and the local smoothness of the objective function along the SGD path, and the sensitivity of the loss function to perturbations to the final output. Our key technical tool is combining the information-theoretic generalization bounds previously used for analyzing randomized variants of SGD with a perturbation analysis of the iterates.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

3D object classification has attracted appealing attentions in academic researches and industrial applications. However, most existing methods need to access the training data of past 3D object classes when facing the common real-world scenario: new classes of 3D objects arrive in a sequence. Moreover, the performance of advanced approaches degrades dramatically for past learned classes (i.e., catastrophic forgetting), due to the irregular and redundant geometric structures of 3D point cloud data. To address these challenges, we propose a new Incremental 3D Object Learning (i.e., I3DOL) model, which is the first exploration to learn new classes of 3D object continually. Specifically, an adaptive-geometric centroid module is designed to construct discriminative local geometric structures, which can better characterize the irregular point cloud representation for 3D object. Afterwards, to prevent the catastrophic forgetting brought by redundant geometric information, a geometric-aware attention mechanism is developed to quantify the contributions of local geometric structures, and explore unique 3D geometric characteristics with high contributions for classes incremental learning. Meanwhile, a score fairness compensation strategy is proposed to further alleviate the catastrophic forgetting caused by unbalanced data between past and new classes of 3D object, by compensating biased prediction for new classes in the validation phase. Experiments on 3D representative datasets validate the superiority of our I3DOL framework.

Asynchronous distributed machine learning solutions have proven very effective so far, but always assuming perfectly functioning workers. In practice, some of the workers can however exhibit Byzantine behavior, caused by hardware failures, software bugs, corrupt data, or even malicious attacks. We introduce \emph{Kardam}, the first distributed asynchronous stochastic gradient descent (SGD) algorithm that copes with Byzantine workers. Kardam consists of two complementary components: a filtering and a dampening component. The first is scalar-based and ensures resilience against $\frac{1}{3}$ Byzantine workers. Essentially, this filter leverages the Lipschitzness of cost functions and acts as a self-stabilizer against Byzantine workers that would attempt to corrupt the progress of SGD. The dampening component bounds the convergence rate by adjusting to stale information through a generic gradient weighting scheme. We prove that Kardam guarantees almost sure convergence in the presence of asynchrony and Byzantine behavior, and we derive its convergence rate. We evaluate Kardam on the CIFAR-100 and EMNIST datasets and measure its overhead with respect to non Byzantine-resilient solutions. We empirically show that Kardam does not introduce additional noise to the learning procedure but does induce a slowdown (the cost of Byzantine resilience) that we both theoretically and empirically show to be less than $f/n$, where $f$ is the number of Byzantine failures tolerated and $n$ the total number of workers. Interestingly, we also empirically observe that the dampening component is interesting in its own right for it enables to build an SGD algorithm that outperforms alternative staleness-aware asynchronous competitors in environments with honest workers.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

北京阿比特科技有限公司