In order to gain a better understanding of the state space of programs, with the aim of making their verification more tractable, models based on directed topological spaces have been introduced, allowing to take in account equivalence between execution traces, as well as translate features of the execution (such as the presence of deadlocks) into geometrical situations. In this context, many algorithms were introduced, based on a description of the geometrical models as regions consisting of unions of rectangles. We explain here that these constructions can actually be performed directly on the syntax of programs, thus resulting in representations which are more natural and easier to implement. In order to do so, we start from the observation that positions in a program can be described as partial explorations of the program. The operational semantics induces a partial order on positions, and regions can be defined as formal unions of intervals in the resulting poset. We then study the structure of such regions and show that, under reasonable conditions, they form a boolean algebra and admit a representation in normal form (which corresponds to covering a space by maximal intervals), thus supporting the constructions needed for the purpose of studying programs. All the operations involved here are given explicit algorithmic descriptions.
We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity similar to the one introduced by Desharnais, Laviolette, and Tracol, which is parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof.
Approximate-message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing number of new iterations proposed for increasingly complex problems, ranging from multi-layer inference to low-rank matrix estimation with elaborate priors. In this paper, we address the following questions: is there a structure underlying all AMP iterations that unifies them in a common framework? Can we use such a structure to give a modular proof of state evolution equations, adaptable to new AMP iterations without reproducing each time the full argument ? We propose an answer to both questions, showing that AMP instances can be generically indexed by an oriented graph. This enables to give a unified interpretation of these iterations, independent from the problem they solve, and a way of composing them arbitrarily. We then show that all AMP iterations indexed by such a graph admit rigorous SE equations, extending the reach of previous proofs, and proving a number of recent heuristic derivations of those equations. Our proof naturally includes non-separable functions and we show how existing refinements, such as spatial coupling or matrix-valued variables, can be combined with our framework.
We study approaches for compressing the empirical measure in the context of finite dimensional reproducing kernel Hilbert spaces (RKHSs).In this context, the empirical measure is contained within a natural convex set and can be approximated using convex optimization methods. Such an approximation gives under certain conditions rise to a coreset of data points. A key quantity that controls how large such a coreset has to be is the size of the largest ball around the empirical measure that is contained within the empirical convex set. The bulk of our work is concerned with deriving high probability lower bounds on the size of such a ball under various conditions. We complement this derivation of the lower bound by developing techniques that allow us to apply the compression approach to concrete inference problems such as kernel ridge regression. We conclude with a construction of an infinite dimensional RKHS for which the compression is poor, highlighting some of the difficulties one faces when trying to move to infinite dimensional RKHSs.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
Generating a test suite for a quantum program such that it has the maximum number of failing tests is an optimization problem. For such optimization, search-based testing has shown promising results in the context of classical programs. To this end, we present a test generation tool for quantum programs based on a genetic algorithm, called QuSBT (Search-based Testing of Quantum Programs). QuSBT automates the testing of quantum programs, with the aim of finding a test suite having the maximum number of failing test cases. QuSBT utilizes IBM's Qiskit as the simulation framework for quantum programs. We present the tool architecture in addition to the implemented methodology (i.e., the encoding of the search individual, the definition of the fitness function expressing the search problem, and the test assessment w.r.t. two types of failures). Finally, we report results of the experiments in which we tested a set of faulty quantum programs with QuSBT to assess its effectiveness. Repository (code and experimental results): //github.com/Simula-COMPLEX/qusbt-tool Video: //youtu.be/3apRCtluAn4
Enterprise cloud developers have to build applications that are resilient to failures and interruptions. We advocate for, formalize, implement, and evaluate a simple, albeit effective, fault-tolerant programming model for the cloud based on actors, reliable message delivery, and retry orchestration. Our model simultaneously guarantees that (1) failed actor invocations are retried until success and (2) that a strict happens before relationship is preserved across failures within each distributed chain of invocations and retries. These guarantees make it possible to productively develop fault-tolerant distributed applications leveraging cloud services, ranging from classic problems of concurrency theory to enterprise applications. Built as a service mesh, our runtime can compose application components written in any programming language and scale with the application. We measure overhead relative to reliable message queues. Using an application inspired by a typical enterprise scenario, we assess fault tolerance and the impact of fault recovery on performance.
Bluetooth technology has enabled short-range wireless communication for billions of devices. Bluetooth Low-Energy (BLE) variant aims at improving power consumption on battery-constrained devices. BLE-enabled devices broadcast information (e.g., as beacons) to nearby devices via advertisements. Unfortunately, such functionality can become a double-edged sword at the hands of attackers. In this paper, we primarily show how an attacker can exploit BLE advertisements to exfiltrate information from BLE-enable devices. In particular, our attack establishes a communication medium between two devices without requiring any prior authentication or pairing. We develop a proof-of-concept attack framework on the Android ecosystem and assess its performance via a thorough set of experiments. Our results indicate that such an exfiltration attack is indeed possible though with a low data rate. Nevertheless, we also demonstrate potential use cases and enhancements to our attack that can further its severeness. Finally, we discuss possible countermeasures to prevent such an attack.
Bearing fault identification and analysis is an important research area in the field of machinery fault diagnosis. Aiming at the common faults of rolling bearings, we propose a data-driven diagnostic algorithm based on the characteristics of bearing vibrations called multi-size kernel based adaptive convolutional neural network (MSKACNN). Using raw bearing vibration signals as the inputs, MSKACNN provides vibration feature learning and signal classification capabilities to identify and analyze bearing faults. Ball mixing is a ball bearing production quality problem that is difficult to identify using traditional frequency domain analysis methods since it requires high frequency resolutions of the measurement signals and results in a long analyzing time. The proposed MSKACNN is shown to improve the efficiency and accuracy of ball mixing diagnosis. To further demonstrate the effectiveness of MSKACNN in bearing fault identification, a bearing vibration data acquisition system was developed, and vibration signal acquisition was performed on rolling bearings under five different fault conditions including ball mixing. The resulting datasets were used to analyze the performance of our proposed model. To validate the adaptive ability of MSKACNN, fault test data from the Case Western Reserve University Bearing Data Center were also used. Test results show that MSKACNN can identify the different bearing conditions with high accuracy with high generalization ability. We presented an implementation of the MSKACNN as a lightweight module for a real-time bearing fault diagnosis system that is suitable for production.
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.
Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.