亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity similar to the one introduced by Desharnais, Laviolette, and Tracol, which is parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof.

相關內容

Event cameras are bio-inspired sensors that perform well in challenging illumination conditions and have high temporal resolution. However, their concept is fundamentally different from traditional frame-based cameras. The pixels of an event camera operate independently and asynchronously. They measure changes of the logarithmic brightness and return them in the highly discretised form of time-stamped events indicating a relative change of a certain quantity since the last event. New models and algorithms are needed to process this kind of measurements. The present work looks at several motion estimation problems with event cameras. The flow of the events is modelled by a general homographic warping in a space-time volume, and the objective is formulated as a maximisation of contrast within the image of warped events. Our core contribution consists of deriving globally optimal solutions to these generally non-convex problems, which removes the dependency on a good initial guess plaguing existing methods. Our methods rely on branch-and-bound optimisation and employ novel and efficient, recursive upper and lower bounds derived for six different contrast estimation functions. The practical validity of our approach is demonstrated by a successful application to three different event camera motion estimation problems.

The generalization of model-based reinforcement learning (MBRL) methods to environments with unseen transition dynamics is an important yet challenging problem. Existing methods try to extract environment-specified information $Z$ from past transition segments to make the dynamics prediction model generalizable to different dynamics. However, because environments are not labelled, the extracted information inevitably contains redundant information unrelated to the dynamics in transition segments and thus fails to maintain a crucial property of $Z$: $Z$ should be similar in the same environment and dissimilar in different ones. As a result, the learned dynamics prediction function will deviate from the true one, which undermines the generalization ability. To tackle this problem, we introduce an interventional prediction module to estimate the probability of two estimated $\hat{z}_i, \hat{z}_j$ belonging to the same environment. Furthermore, by utilizing the $Z$'s invariance within a single environment, a relational head is proposed to enforce the similarity between $\hat{{Z}}$ from the same environment. As a result, the redundant information will be reduced in $\hat{Z}$. We empirically show that $\hat{{Z}}$ estimated by our method enjoy less redundant information than previous methods, and such $\hat{{Z}}$ can significantly reduce dynamics prediction errors and improve the performance of model-based RL methods on zero-shot new environments with unseen dynamics. The codes of this method are available at \url{//github.com/CR-Gjx/RIA}.

Most off-policy evaluation methods for contextual bandits have focused on the expected outcome of a policy, which is estimated via methods that at best provide only asymptotic guarantees. However, in many applications, the expectation may not be the best measure of performance as it does not capture the variability of the outcome. In addition, particularly in safety-critical settings, stronger guarantees than asymptotic correctness may be required. To address these limitations, we consider a novel application of conformal prediction to contextual bandits. Given data collected under a behavioral policy, we propose \emph{conformal off-policy prediction} (COPP), which can output reliable predictive intervals for the outcome under a new target policy. We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup, and empirically demonstrate the utility of COPP compared with existing methods on synthetic and real-world data.

The Erd\H{o}s distinct distance problem is a ubiquitous problem in discrete geometry. Somewhat less well known is Erd\H{o}s' distinct angle problem, the problem of finding the minimum number of distinct angles between $n$ non-collinear points in the plane. Recent work has introduced bounds on a wide array of variants of this problem, inspired by similar variants in the distance setting. In this short note, we improve the best known upper bound for the minimum number of distinct angles formed by $n$ points in general position from $O(n^{\log_2(7)})$ to $O(n^2)$. Before this work, similar bounds relied on projections onto a generic plane from higher dimensional space. In this paper, we employ the geometric properties of a logarithmic spiral, sidestepping the need for a projection.

Most of the trace-checking tools only yield a Boolean verdict. However, when a property is violated by a trace, engineers usually inspect the trace to understand the cause of the violation; such manual diagnostic is time-consuming and error-prone. Existing approaches that complement trace-checking tools with diagnostic capabilities either produce low-level explanations that are hardly comprehensible by engineers or do not support complex signal-based temporal properties. In this paper, we propose TD-SB-TemPsy, a trace-diagnostic approach for properties expressed using SB-TemPsy-DSL. Given a property and a trace that violates the property, TD-SB-TemPsy determines the root cause of the property violation. TD-SB-TemPsy relies on the concepts of violation cause, which characterizes one of the behaviors of the system that may lead to a property violation, and diagnoses, which are associated with violation causes and provide additional information to help engineers understand the violation cause. As part of TD-SB-TemPsy, we propose a language-agnostic methodology to define violation causes and diagnoses. In our context, its application resulted in a catalog of 34 violation causes, each associated with one diagnosis, tailored to properties expressed in SB-TemPsy-DSL. We assessed the applicability of TD-SB-TemPsy using an industrial case study from the satellite domain. The results show that TD-SB-TemPsy could finish within a timeout of 1 min for ~83:66% of the trace-property combinations in our dataset, yielding a diagnosis in ~99:84% of these cases; these results suggest that our tool is applicable and efficient in most cases.

This article is concerned with two notions of generalized matroid representations motivated by information theory and computer science. The first involves representations by discrete random variables and the second approximate representations by subspace arrangements. In both cases we show that there is no algorithm that checks whether such a representation exists. As a consequence, the conditional independence implication problem is undecidable, which gives an independent answer to a question in information theory by Geiger and Pearl that was recently also answered by Cheuk Ting Li. These problems are closely related to problems of characterizing the achievable rates in certain network coding problems and of constructing secret sharing schemes. Our methods to approach these problems are mostly algebraic. Specifically, they involve reductions from the uniform word problem for finite groups and the word problem for sofic groups.

Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this paper proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model [Ros2002, Tan2006], and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis problem as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The result is a predictive interval that has guaranteed nominal coverage of the ITE, a method that provides coverage with distribution-free and nonasymptotic guarantees. We evaluate the method on synthetic data and illustrate its application in an observational study.

In linear regression we wish to estimate the optimum linear least squares predictor for a distribution over $d$-dimensional input points and real-valued responses, based on a small sample. Under standard random design analysis, where the sample is drawn i.i.d. from the input distribution, the least squares solution for that sample can be viewed as the natural estimator of the optimum. Unfortunately, this estimator almost always incurs an undesirable bias coming from the randomness of the input points, which is a significant bottleneck in model averaging. In this paper we show that it is possible to draw a non-i.i.d. sample of input points such that, regardless of the response model, the least squares solution is an unbiased estimator of the optimum. Moreover, this sample can be produced efficiently by augmenting a previously drawn i.i.d. sample with an additional set of $d$ points, drawn jointly according to a certain determinantal point process constructed from the input distribution rescaled by the squared volume spanned by the points. Motivated by this, we develop a theoretical framework for studying volume-rescaled sampling, and in the process prove a number of new matrix expectation identities. We use them to show that for any input distribution and $\epsilon>0$ there is a random design consisting of $O(d\log d+ d/\epsilon)$ points from which an unbiased estimator can be constructed whose expected square loss over the entire distribution is bounded by $1+\epsilon$ times the loss of the optimum. We provide efficient algorithms for generating such unbiased estimators in a number of practical settings and support our claims experimentally.

We revisit the classic regular expression matching problem, that is, given a regular expression $R$ and a string $Q$, decide if $Q$ matches any of the strings specified by $R$. A standard textbook solution [Thompson, CACM 1968] solves this problem in $O(nm)$ time, where $n$ is the length of $Q$ and $m$ is the number of characters in $R$. More recently, several results that improve this bound by polylogarithmic factor have appeared. All of these solutions are essentially based on constructing and simulation a non-deterministic finite automaton. On the other hand, assuming the strong exponential time hypotheses we cannot solve regular expression $O((nm)^{1-\epsilon})$ [Backurs and Indyk, FOCS 2016]. Hence, a natural question is if we can design algorithms that can take advantage of other parameters of the problem to obtain more fine-grained bounds. We present the first algorithm for regular expression matching that can take advantage of sparsity of the automaton simulation. More precisely, we define the \emph{density}, $\Delta$, of the instance to be the total number of states in a simulation of a natural automaton for $R$. The density is always at most $nm+1$ but may be significantly smaller for many typical scenarios, e.g., when a string only matches a small part of the regular expression. Our main result is a new algorithm that solves the problem in $$O\left(\Delta \log \log \frac{nm}{\Delta} + n + m\right)$$ time. This result essentially replaces $nm$ with $\Delta$ in the complexity of regular expression matching. Prior to this work no non-trivial bound in terms of $\Delta$ was known. The key technical contribution is a new linear space representation of the classic position automaton that supports fast state-set transition computation in near-linear time in the size of the input and output state sets.

We consider a linear stochastic bandit problem involving $M$ agents that can collaborate via a central server to minimize regret. A fraction $\alpha$ of these agents are adversarial and can act arbitrarily, leading to the following tension: while collaboration can potentially reduce regret, it can also disrupt the process of learning due to adversaries. In this work, we provide a fundamental understanding of this tension by designing new algorithms that balance the exploration-exploitation trade-off via carefully constructed robust confidence intervals. We also complement our algorithms with tight analyses. First, we develop a robust collaborative phased elimination algorithm that achieves $\tilde{O}\left(\alpha+ 1/\sqrt{M}\right) \sqrt{dT}$ regret for each good agent; here, $d$ is the model-dimension and $T$ is the horizon. For small $\alpha$, our result thus reveals a clear benefit of collaboration despite adversaries. Using an information-theoretic argument, we then prove a matching lower bound, thereby providing the first set of tight, near-optimal regret bounds for collaborative linear bandits with adversaries. Furthermore, by leveraging recent advances in high-dimensional robust statistics, we significantly extend our algorithmic ideas and results to (i) the generalized linear bandit model that allows for non-linear observation maps; and (ii) the contextual bandit setting that allows for time-varying feature vectors.

北京阿比特科技有限公司