亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most of the trace-checking tools only yield a Boolean verdict. However, when a property is violated by a trace, engineers usually inspect the trace to understand the cause of the violation; such manual diagnostic is time-consuming and error-prone. Existing approaches that complement trace-checking tools with diagnostic capabilities either produce low-level explanations that are hardly comprehensible by engineers or do not support complex signal-based temporal properties. In this paper, we propose TD-SB-TemPsy, a trace-diagnostic approach for properties expressed using SB-TemPsy-DSL. Given a property and a trace that violates the property, TD-SB-TemPsy determines the root cause of the property violation. TD-SB-TemPsy relies on the concepts of violation cause, which characterizes one of the behaviors of the system that may lead to a property violation, and diagnoses, which are associated with violation causes and provide additional information to help engineers understand the violation cause. As part of TD-SB-TemPsy, we propose a language-agnostic methodology to define violation causes and diagnoses. In our context, its application resulted in a catalog of 34 violation causes, each associated with one diagnosis, tailored to properties expressed in SB-TemPsy-DSL. We assessed the applicability of TD-SB-TemPsy using an industrial case study from the satellite domain. The results show that TD-SB-TemPsy could finish within a timeout of 1 min for ~83:66% of the trace-property combinations in our dataset, yielding a diagnosis in ~99:84% of these cases; these results suggest that our tool is applicable and efficient in most cases.

相關內容

This paper proposes a novel orientation-aware model predictive control (MPC) for dynamic humanoid walking that can plan footstep locations online. Instead of a point-mass model, this work uses the augmented single rigid body model (aSRBM) to enable the MPC to leverage orientation dynamics and stepping strategy within a unified optimization framework. With the footstep location as part of the decision variables in the aSRBM, the MPC can reason about stepping within the kinematic constraints. A task-space controller (TSC) tracks the body pose and swing leg references output from the MPC, while exploiting the full-order dynamics of the humanoid. The proposed control framework is suitable for real-time applications since both MPC and TSC are formulated as quadratic programs. Simulation investigations show that the orientation-aware MPC-based framework is more robust against external torque disturbance compared to state-of-the-art controllers using the point mass model, especially when the torso undergoes large angular excursion. The same control framework can also enable the MIT Humanoid to overcome uneven terrains, such as traversing a wave field.

We show that 11-channel sorting networks have at least 35 comparators and that 12-channel sorting networks have at least 39 comparators. This positively settles the optimality of the corresponding sorting networks given in The Art of Computer Programming vol. 3 and closes the two smallest open instances of the Bose-Nelson sorting problem. We obtain these bounds by generalizing a result of Van Voorhis from sorting networks to a more general class of comparator networks. From this we derive a dynamic programming algorithm that computes the optimal size for a sorting network with a given number of channels. From an execution of this algorithm we construct a certificate containing a derivation of the corresponding lower size bound, which we check using a program formally verified using the Isabelle/HOL proof assistant.

The {\em insertion-deletion channel} takes as input a binary string $x \in\{0, 1\}^n$, and outputs a string $\widetilde{x}$ where some of the bits have been deleted and others inserted independently at random. In the {\em trace reconstruction problem}, one is given many outputs (called {\em traces}) of the insertion-deletion channel on the same input message $x$, and asked to recover the input message. Nazarov and Peres (STOC 2017), and De, Odonnell and Servido (STOC 2017) showed that any string $x$ can be reconstructed from $\exp(O(n^{1/3}))$ traces. Holden, Pemantle, Peres and Zhai (COLT 2018) adapt the techniques used to prove this upper bound, to an algorithm for the average-case trace reconstruction with a sample complexity of $\exp(O(\log^{1/3} n))$. However, it is not clear how to apply their techniques more generally and in particular for the recent worst-case upper bound of $\exp(\widetilde{O}(n^{1/5}))$ shown by Chase (STOC 2021) for the deletion-channel. We prove a general reduction from the average-case to smaller instances of a problem similar to worst-case. Using this reduction and a generalization of Chase's bound, we construct an improved average-case algorithm with a sample complexity of $\exp(\widetilde{O}(\log^{1/5} n))$. Additionally, we show that Chase's upper-bound holds for the insertion-deletion channel as well.

The idea that social media platforms like Twitter are inhabited by vast numbers of social bots has become widely accepted in recent years. Social bots are assumed to be automated social media accounts operated by malicious actors with the goal of manipulating public opinion. They are credited with the ability to produce content autonomously and to interact with human users. Social bot activity has been reported in many different political contexts, including the U.S. presidential elections, discussions about migration, climate change, and COVID-19. However, the relevant publications either use crude and questionable heuristics to discriminate between supposed social bots and humans or -- in the vast majority of the cases -- fully rely on the output of automatic bot detection tools, most commonly Botometer. In this paper, we point out a fundamental theoretical flaw in the widely-used study design for estimating the prevalence of social bots. Furthermore, we empirically investigate the validity of peer-reviewed Botometer-based studies by closely and systematically inspecting hundreds of accounts that had been counted as social bots. We were unable to find a single social bot. Instead, we found mostly accounts undoubtedly operated by human users, the vast majority of them using Twitter in an inconspicuous and unremarkable fashion without the slightest traces of automation. We conclude that studies claiming to investigate the prevalence, properties, or influence of social bots based on Botometer have, in reality, just investigated false positives and artifacts of this approach.

Causal effect estimation from observational data is a challenging problem, especially with high dimensional data and in the presence of unobserved variables. The available data-driven methods for tackling the problem either provide an estimation of the bounds of a causal effect (i.e. nonunique estimation) or have low efficiency. The major hurdle for achieving high efficiency while trying to obtain unique and unbiased causal effect estimation is how to find a proper adjustment set for confounding control in a fast way, given the huge covariate space and considering unobserved variables. In this paper, we approach the problem as a local search task for finding valid adjustment sets in data. We establish the theorems to support the local search for adjustment sets, and we show that unique and unbiased estimation can be achieved from observational data even when there exist unobserved variables. We then propose a data-driven algorithm that is fast and consistent under mild assumptions. We also make use of a frequent pattern mining method to further speed up the search of minimal adjustment sets for causal effect estimation. Experiments conducted on extensive synthetic and real-world datasets demonstrate that the proposed algorithm outperforms the state-of-the-art criteria/estimators in both accuracy and time-efficiency.

The extensive adoption of business analytics (BA) has brought financial gains and increased efficiencies. However, these advances have simultaneously drawn attention to rising legal and ethical challenges when BA inform decisions with fairness implications. As a response to these concerns, the emerging study of algorithmic fairness deals with algorithmic outputs that may result in disparate outcomes or other forms of injustices for subgroups of the population, especially those who have been historically marginalized. Fairness is relevant on the basis of legal compliance, social responsibility, and utility; if not adequately and systematically addressed, unfair BA systems may lead to societal harms and may also threaten an organization's own survival, its competitiveness, and overall performance. This paper offers a forward-looking, BA-focused review of algorithmic fairness. We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms. We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted. Finally, we chart a path forward by identifying opportunities for business scholars to address impactful, open challenges that are key to the effective and responsible deployment of BA.

Artificial intelligence (AI) has the potential to greatly improve society, but as with any powerful technology, it comes with heightened risks and responsibilities. Current AI research lacks a systematic discussion of how to manage long-tail risks from AI systems, including speculative long-term risks. Keeping in mind the potential benefits of AI, there is some concern that building ever more intelligent and powerful AI systems could eventually result in systems that are more powerful than us; some say this is like playing with fire and speculate that this could create existential risks (x-risks). To add precision and ground these discussions, we provide a guide for how to analyze AI x-risk, which consists of three parts: First, we review how systems can be made safer today, drawing on time-tested concepts from hazard analysis and systems safety that have been designed to steer large processes in safer directions. Next, we discuss strategies for having long-term impacts on the safety of future systems. Finally, we discuss a crucial concept in making AI systems safer by improving the balance between safety and general capabilities. We hope this document and the presented concepts and tools serve as a useful guide for understanding how to analyze AI x-risk.

User embeddings (vectorized representations of a user) are essential in recommendation systems. Numerous approaches have been proposed to construct a representation for the user in order to find similar items for retrieval tasks, and they have been proven effective in industrial recommendation systems as well. Recently people have discovered the power of using multiple embeddings to represent a user, with the hope that each embedding represents the user's interest in a certain topic. With multi-interest representation, it's important to model the user's preference over the different topics and how the preference change with time. However, existing approaches either fail to estimate the user's affinity to each interest or unreasonably assume every interest of every user fades with an equal rate with time, thus hurting the recall of candidate retrieval. In this paper, we propose the Multi-Interest Preference (MIP) model, an approach that not only produces multi-interest for users by using the user's sequential engagement more effectively but also automatically learns a set of weights to represent the preference over each embedding so that the candidates can be retrieved from each interest proportionally. Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司