亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian processes are machine learning models capable of learning unknown functions in a way that represents uncertainty, thereby facilitating construction of optimal decision-making systems. Motivated by a desire to deploy Gaussian processes in novel areas of science, a rapidly-growing line of research has focused on constructively extending these models to handle non-Euclidean domains, including Riemannian manifolds, such as spheres and tori. We propose techniques that generalize this class to model vector fields on Riemannian manifolds, which are important in a number of application areas in the physical sciences. To do so, we present a general recipe for constructing gauge independent kernels, which induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent with geometry, from scalar-valued Riemannian kernels. We extend standard Gaussian process training methods, such as variational inference, to this setting. This enables vector-valued Gaussian processes on Riemannian manifolds to be trained using standard methods and makes them accessible to machine learning practitioners.

相關內容

Processing 是一(yi)門開源編(bian)程語言和(he)與(yu)之配套的集(ji)成開發環境(jing)(IDE)的名稱。Processing 在電子藝術(shu)和(he)視覺設計社區(qu)被用來教授編(bian)程基礎,并運用于大量的新媒體和(he)互動(dong)藝術(shu)作品中。

We revisit widely used preferential Gaussian processes by Chu et al.(2005) and challenge their modelling assumption that imposes rankability of data items via latent utility function values. We propose a generalisation of pgp which can capture more expressive latent preferential structures in the data and thus be used to model inconsistent preferences, i.e. where transitivity is violated, or to discover clusters of comparable items via spectral decomposition of the learned preference functions. We also consider the properties of associated covariance kernel functions and its reproducing kernel Hilbert Space (RKHS), giving a simple construction that satisfies universality in the space of preference functions. Finally, we provide an extensive set of numerical experiments on simulated and real-world datasets showcasing the competitiveness of our proposed method with state-of-the-art. Our experimental findings support the conjecture that violations of rankability are ubiquitous in real-world preferential data.

Gaussian process regression is a widely-applied method for function approximation and uncertainty quantification. The technique has gained popularity recently in the machine learning community due to its robustness and interpretability. The mathematical methods we discuss in this paper are an extension of the Gaussian-process framework. We are proposing advanced kernel designs that only allow for functions with certain desirable characteristics to be elements of the reproducing kernel Hilbert space (RKHS) that underlies all kernel methods and serves as the sample space for Gaussian process regression. These desirable characteristics reflect the underlying physics; two obvious examples are symmetry and periodicity constraints. In addition, non-stationary kernel designs can be defined in the same framework to yield flexible multi-task Gaussian processes. We will show the impact of advanced kernel designs on Gaussian processes using several synthetic and two scientific data sets. The results show that including domain knowledge, communicated through advanced kernel designs, has a significant impact on the accuracy and relevance of the function approximation.

Weighted twin support vector machines (WLTSVM) mines as much potential similarity information in samples as possible to improve the common short-coming of non-parallel plane classifiers. Compared with twin support vector machines (TWSVM), it reduces the time complexity by deleting the superfluous constraints using the inter-class K-Nearest Neighbor (KNN). Multi-view learning (MVL) is a newly developing direction of machine learning, which focuses on learning acquiring information from the data indicated by multiple feature sets. In this paper, we propose multi-view learning with privileged weighted twin support vector machines (MPWTSVM). It not only inherits the advantages of WLTSVM but also has its characteristics. Firstly, it enhances generalization ability by mining intra-class information from the same perspective. Secondly, it reduces the redundancy constraints with the help of inter-class information, thus improving the running speed. Most importantly, it can follow both the consensus and the complementarity principle simultaneously as a multi-view classification model. The consensus principle is realized by minimizing the coupling items of the two views in the original objective function. The complementary principle is achieved by establishing privileged information paradigms and MVL. A standard quadratic programming solver is used to solve the problem. Compared with multi-view classification models such as SVM-2K, MVTSVM, MCPK, and PSVM-2V, our model has better accuracy and classification efficiency. Experimental results on 45 binary data sets prove the effectiveness of our method.

We prove that Riemannian contraction in a supervised learning setting implies generalization. Specifically, we show that if an optimizer is contracting in some Riemannian metric with rate $\lambda > 0$, it is uniformly algorithmically stable with rate $\mathcal{O}(1/\lambda n)$, where $n$ is the number of labelled examples in the training set. The results hold for stochastic and deterministic optimization, in both continuous and discrete-time, for convex and non-convex loss surfaces. The associated generalization bounds reduce to well-known results in the particular case of gradient descent over convex or strongly convex loss surfaces. They can be shown to be optimal in certain linear settings, such as kernel ridge regression under gradient flow.

There is growing interest in applying distributed machine learning to edge computing, forming federated edge learning. Federated edge learning faces non-i.i.d. and heterogeneous data, and the communication between edge workers, possibly through distant locations and with unstable wireless networks, is more costly than their local computational overhead. In this work, we propose DONE, a distributed approximate Newton-type algorithm with fast convergence rate for communication-efficient federated edge learning. First, with strongly convex and smooth loss functions, DONE approximates the Newton direction in a distributed manner using the classical Richardson iteration on each edge worker. Second, we prove that DONE has linear-quadratic convergence and analyze its communication complexities. Finally, the experimental results with non-i.i.d. and heterogeneous data show that DONE attains a comparable performance to the Newton's method. Notably, DONE requires fewer communication iterations compared to distributed gradient descent and outperforms DANE and FEDL, state-of-the-art approaches, in the case of non-quadratic loss functions.

The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.

There has recently been increasing interest in learning representations of temporal knowledge graphs (KGs), which record the dynamic relationships between entities over time. Temporal KGs often exhibit multiple simultaneous non-Euclidean structures, such as hierarchical and cyclic structures. However, existing embedding approaches for temporal KGs typically learn entity representations and their dynamic evolution in the Euclidean space, which might not capture such intrinsic structures very well. To this end, we propose Dy- ERNIE, a non-Euclidean embedding approach that learns evolving entity representations in a product of Riemannian manifolds, where the composed spaces are estimated from the sectional curvatures of underlying data. Product manifolds enable our approach to better reflect a wide variety of geometric structures on temporal KGs. Besides, to capture the evolutionary dynamics of temporal KGs, we let the entity representations evolve according to a velocity vector defined in the tangent space at each timestamp. We analyze in detail the contribution of geometric spaces to representation learning of temporal KGs and evaluate our model on temporal knowledge graph completion tasks. Extensive experiments on three real-world datasets demonstrate significantly improved performance, indicating that the dynamics of multi-relational graph data can be more properly modeled by the evolution of embeddings on Riemannian manifolds.

In this work, we take a representation learning perspective on hierarchical reinforcement learning, where the problem of learning lower layers in a hierarchy is transformed into the problem of learning trajectory-level generative models. We show that we can learn continuous latent representations of trajectories, which are effective in solving temporally extended and multi-stage problems. Our proposed model, SeCTAR, draws inspiration from variational autoencoders, and learns latent representations of trajectories. A key component of this method is to learn both a latent-conditioned policy and a latent-conditioned model which are consistent with each other. Given the same latent, the policy generates a trajectory which should match the trajectory predicted by the model. This model provides a built-in prediction mechanism, by predicting the outcome of closed loop policy behavior. We propose a novel algorithm for performing hierarchical RL with this model, combining model-based planning in the learned latent space with an unsupervised exploration objective. We show that our model is effective at reasoning over long horizons with sparse rewards for several simulated tasks, outperforming standard reinforcement learning methods and prior methods for hierarchical reasoning, model-based planning, and exploration.

Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.

Are we using the right potential functions in the Conditional Random Field models that are popular in the Vision community? Semantic segmentation and other pixel-level labelling tasks have made significant progress recently due to the deep learning paradigm. However, most state-of-the-art structured prediction methods also include a random field model with a hand-crafted Gaussian potential to model spatial priors, label consistencies and feature-based image conditioning. In this paper, we challenge this view by developing a new inference and learning framework which can learn pairwise CRF potentials restricted only by their dependence on the image pixel values and the size of the support. Both standard spatial and high-dimensional bilateral kernels are considered. Our framework is based on the observation that CRF inference can be achieved via projected gradient descent and consequently, can easily be integrated in deep neural networks to allow for end-to-end training. It is empirically demonstrated that such learned potentials can improve segmentation accuracy and that certain label class interactions are indeed better modelled by a non-Gaussian potential. In addition, we compare our inference method to the commonly used mean-field algorithm. Our framework is evaluated on several public benchmarks for semantic segmentation with improved performance compared to previous state-of-the-art CNN+CRF models.

北京阿比特科技有限公司