亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This is a tutorial and survey paper on Karush-Kuhn-Tucker (KKT) conditions, first-order and second-order numerical optimization, and distributed optimization. After a brief review of history of optimization, we start with some preliminaries on properties of sets, norms, functions, and concepts of optimization. Then, we introduce the optimization problem, standard optimization problems (including linear programming, quadratic programming, and semidefinite programming), and convex problems. We also introduce some techniques such as eliminating inequality, equality, and set constraints, adding slack variables, and epigraph form. We introduce Lagrangian function, dual variables, KKT conditions (including primal feasibility, dual feasibility, weak and strong duality, complementary slackness, and stationarity condition), and solving optimization by method of Lagrange multipliers. Then, we cover first-order optimization including gradient descent, line-search, convergence of gradient methods, momentum, steepest descent, and backpropagation. Other first-order methods are explained, such as accelerated gradient method, stochastic gradient descent, mini-batch gradient descent, stochastic average gradient, stochastic variance reduced gradient, AdaGrad, RMSProp, and Adam optimizer, proximal methods (including proximal mapping, proximal point algorithm, and proximal gradient method), and constrained gradient methods (including projected gradient method, projection onto convex sets, and Frank-Wolfe method). We also cover non-smooth and $\ell_1$ optimization methods including lasso regularization, convex conjugate, Huber function, soft-thresholding, coordinate descent, and subgradient methods. Then, we explain second-order methods including Newton's method for unconstrained, equality constrained, and inequality constrained problems....

相關內容

最(zui)優(you)化是應用數學的一(yi)(yi)個(ge)分支,主要指(zhi)在一(yi)(yi)定(ding)條件限制下,選取某(mou)種研究方(fang)案使目標(biao)達到最(zui)優(you)的一(yi)(yi)種方(fang)法。最(zui)優(you)化問題在當今的軍事(shi)、工(gong)程、管理等(deng)領域(yu)有著極其廣泛的應用。

In this paper, we consider both first- and second-order techniques to address continuous optimization problems arising in machine learning. In the first-order case, we propose a framework of transition from deterministic or semi-deterministic to stochastic quadratic regularization methods. We leverage the two-phase nature of stochastic optimization to propose a novel first-order algorithm with adaptive sampling and adaptive step size. In the second-order case, we propose a novel stochastic damped L-BFGS method that improves on previous algorithms in the highly nonconvex context of deep learning. Both algorithms are evaluated on well-known deep learning datasets and exhibit promising performance.

In this paper a class of optimization problems with uncertain linear constraints is discussed. It is assumed that the constraint coefficients are random vectors whose probability distributions are only partially known. Possibility theory is used to model the imprecise probabilities. In one of the interpretations, a possibility distribution (a membership function of a fuzzy set) in the set of coefficient realizations induces a necessity measure, which in turn defines a family of probability distributions in this set. The distributionally robust approach is then used to transform the imprecise constraints into deterministic counterparts. Namely, the uncertain left-had side of each constraint is replaced with the expected value with respect to the worst probability distribution that can occur. It is shown how to represent the resulting problem by using linear or second order cone constraints. This leads to problems which are computationally tractable for a wide class of optimization models, in particular for linear programming.

Motivated by recent increased interest in optimization algorithms for non-convex optimization in application to training deep neural networks and other optimization problems in data analysis, we give an overview of recent theoretical results on global performance guarantees of optimization algorithms for non-convex optimization. We start with classical arguments showing that general non-convex problems could not be solved efficiently in a reasonable time. Then we give a list of problems that can be solved efficiently to find the global minimizer by exploiting the structure of the problem as much as it is possible. Another way to deal with non-convexity is to relax the goal from finding the global minimum to finding a stationary point or a local minimum. For this setting, we first present known results for the convergence rates of deterministic first-order methods, which are then followed by a general theoretical analysis of optimal stochastic and randomized gradient schemes, and an overview of the stochastic first-order methods. After that, we discuss quite general classes of non-convex problems, such as minimization of $\alpha$-weakly-quasi-convex functions and functions that satisfy Polyak--Lojasiewicz condition, which still allow obtaining theoretical convergence guarantees of first-order methods. Then we consider higher-order and zeroth-order/derivative-free methods and their convergence rates for non-convex optimization problems.

Optimal algorithm design for federated learning (FL) remains an open problem. This paper explores the full potential of FL in practical edge computing systems where workers may have different computation and communication capabilities, and quantized intermediate model updates are sent between the server and workers. First, we present a general quantized parallel mini-batch stochastic gradient descent (SGD) algorithm for FL, namely GenQSGD, which is parameterized by the number of global iterations, the numbers of local iterations at all workers, and the mini-batch size. We also analyze its convergence error for any choice of the algorithm parameters. Then, we optimize the algorithm parameters to minimize the energy cost under the time constraint and convergence error constraint. The optimization problem is a challenging non-convex problem with non-differentiable constraint functions. We propose an iterative algorithm to obtain a KKT point using advanced optimization techniques. Numerical results demonstrate the significant gains of GenQSGD over existing FL algorithms and reveal the importance of optimally designing FL algorithms.

We consider the problem of minimizing a convex function that is evolving according to unknown and possibly stochastic dynamics, which may depend jointly on time and on the decision variable itself. Such problems abound in the machine learning and signal processing literature, under the names of concept drift, stochastic tracking, and performative prediction. We provide novel non-asymptotic convergence guarantees for stochastic algorithms with iterate averaging, focusing on bounds valid both in expectation and with high probability. The efficiency estimates we obtain clearly decouple the contributions of optimization error, gradient noise, and time drift. Notably, we show that the tracking efficiency of the proximal stochastic gradient method depends only logarithmically on the initialization quality, when equipped with a step-decay schedule. Numerical experiments illustrate our results.

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical points faster than regular gradient descent. A randomized version also finds approximate second-order critical points. Both the algorithms and their analyses build extensively on existing work in the Euclidean case. The basic operation consists in running the Euclidean accelerated gradient descent method (appropriately safe-guarded against non-convexity) in the current tangent space, then moving back to the manifold and repeating. This requires lifting the cost function from the manifold to the tangent space, which can be done for example through the Riemannian exponential map. For this approach to succeed, the lifted cost function (called the pullback) must retain certain Lipschitz properties. As a contribution of independent interest, we prove precise claims to that effect, with explicit constants. Those claims are affected by the Riemannian curvature of the manifold, which in turn affects the worst-case complexity bounds for our optimization algorithms.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司