We present a simultaneous sensor-based inspection and footprint coverage (SIFC) planning and control design with applications to autonomous robotic crack mapping and filling. The main challenge of the SIFC problem lies in the coupling of complete sensing (for mapping) and robotic footprint (for filling) coverage tasks. Initially, we assume known target information (e.g., crack) and employ classic cell decomposition methods to achieve complete sensing coverage of the workspace and complete robotic footprint coverage using the least-cost route. Subsequently, we generalize the algorithm to handle unknown target information, allowing the robot to scan and incrementally construct the target graph online while conducting robotic footprint coverage. The online polynomial-time SIFC planning algorithm minimizes the total robot traveling distance, guarantees complete sensing coverage of the entire workspace, and achieves near-optimal robotic footprint coverage, as demonstrated through empirical experiments. For the demonstrated application, we design coordinated nozzle motion control with the planned robot trajectory to efficiently fill all cracks within the robot's footprint. Experimental results are presented to illustrate the algorithm's design, performance, and comparisons. The SIFC algorithm offers a high-efficiency motion planning solution for various robotic applications requiring simultaneous sensing and actuation coverage.
The receiver design for multi-input multi-output (MIMO) ultra-reliable and low-latency communication (URLLC) systems can be a tough task due to the use of short channel codes and few pilot symbols. Consequently, error propagation can occur in traditional turbo receivers, leading to performance degradation. Moreover, the processing delay induced by information exchange between different modules may also be undesirable for URLLC. To address the issues, we advocate to perform joint channel estimation, detection, and decoding (JCDD) for MIMO URLLC systems encoded by short low-density parity-check (LDPC) codes. Specifically, we develop two novel JCDD problem formulations based on the maximum a posteriori (MAP) criterion for Gaussian MIMO channels and sparse mmWave MIMO channels, respectively, which integrate the pilots, the bit-to-symbol mapping, the LDPC code constraints, as well as the channel statistical information. Both the challenging large-scale non-convex problems are then solved based on the alternating direction method of multipliers (ADMM) algorithms, where closed-form solutions are achieved in each ADMM iteration. Furthermore, two JCDD neural networks, called JCDDNet-G and JCDDNet-S, are built by unfolding the derived ADMM algorithms and introducing trainable parameters. It is interesting to find via simulations that the proposed trainable JCDD receivers can outperform the turbo receivers with affordable computational complexities.
Autonomous vehicles often make complex decisions via machine learning-based predictive models applied to collected sensor data. While this combination of methods provides a foundation for real-time actions, self-driving behavior primarily remains opaque to end users. In this sense, explainability of real-time decisions is a crucial and natural requirement for building trust in autonomous vehicles. Moreover, as autonomous vehicles still cause serious traffic accidents for various reasons, timely conveyance of upcoming hazards to road users can help improve scene understanding and prevent potential risks. Hence, there is also a need to supply autonomous vehicles with user-friendly interfaces for effective human-machine teaming. Motivated by this problem, we study the role of explainable AI and human-machine interface jointly in building trust in vehicle autonomy. We first present a broad context of the explanatory human-machine systems with the "3W1H" (what, whom, when, how) approach. Based on these findings, we present a situation awareness framework for calibrating users' trust in self-driving behavior. Finally, we perform an experiment on our framework, conduct a user study on it, and validate the empirical findings with hypothesis testing.
Federated learning offers a promising approach under the constraints of networking and data privacy constraints in aerial and space networks (ASNs), utilizing large-scale private edge data from drones, balloons, and satellites. Existing research has extensively studied the optimization of the learning process, computing efficiency, and communication overhead. An important yet often overlooked aspect is that participants contribute predictive knowledge with varying diversity of knowledge, affecting the quality of the learned federated models. In this paper, we propose a novel approach to address this issue by introducing a Weighted Averaging and Client Selection (WeiAvgCS) framework that emphasizes updates from high-diversity clients and diminishes the influence of those from low-diversity clients. Direct sharing of the data distribution may be prohibitive due to the additional private information that is sent from the clients. As such, we introduce an estimation for the diversity using a projection-based method. Extensive experiments have been performed to show WeiAvgCS's effectiveness. WeiAvgCS could converge 46% faster on FashionMNIST and 38% faster on CIFAR10 than its benchmarks on average in our experiments.
Adaptive machine learning (ML) aims to allow ML models to adapt to ever-changing environments with potential concept drift after model deployment. Traditionally, adaptive ML requires a new dataset to be manually labeled to tailor deployed models to altered data distributions. Recently, an interactive causality based self-labeling method was proposed to autonomously associate causally related data streams for domain adaptation, showing promising results compared to traditional feature similarity-based semi-supervised learning. Several unanswered research questions remain, including self-labeling's compatibility with multivariate causality and the quantitative analysis of the auxiliary models used in the self-labeling. The auxiliary models, the interaction time model (ITM) and the effect state detector (ESD), are vital to the success of self-labeling. This paper further develops the self-labeling framework and its theoretical foundations to address these research questions. A framework for the application of self-labeling to multivariate causal graphs is proposed using four basic causal relationships, and the impact of non-ideal ITM and ESD performance is analyzed. A simulated experiment is conducted based on a multivariate causal graph, validating the proposed theory.
Radio imaging is rapidly gaining prominence in the design of future communication systems, with the potential to utilize reconfigurable intelligent surfaces (RISs) as imaging apertures. Although the sparsity of targets in three-dimensional (3D) space has led most research to adopt compressed sensing (CS)-based imaging algorithms, these often require substantial computational and memory burdens. Drawing inspiration from conventional Fourier transform (FT)-based imaging methods, our research seeks to accelerate radio imaging in RIS-aided communication systems. To begin, we introduce a two-stage wavenumber domain 3D imaging technique: first, we modify RIS phase shifts to recover the equivalent channel response from the user equipment to the RIS array, subsequently employing traditional FT-based wavenumber domain methods to produce target images. We also determine the diffraction resolution limits of the system through k-space analysis, taking into account factors including system bandwidth, transmission direction, operating frequency, and the angle subtended by the RIS. Addressing the challenge of limited pilots in communication systems, we unveil an innovative algorithm that merges the strengths of both FT- and CS-based techniques by substituting the expansive sensing matrix with FT-based operators. Our simulation outcomes confirm that our proposed FT-based methods achieve high-quality images while demanding few time, memory, and communication resources.
ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: domain-adaptive tokenization, domain-adaptive continued pretraining, model alignment with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our evaluations demonstrate that domain-adaptive pretraining of language models, can lead to superior performance in domain related downstream tasks compared to their base LLaMA2 counterparts, without degradations in generic capabilities. In particular, our largest model, ChipNeMo-70B, outperforms the highly capable GPT-4 on two of our use cases, namely engineering assistant chatbot and EDA scripts generation, while exhibiting competitive performance on bug summarization and analysis. These results underscore the potential of domain-specific customization for enhancing the effectiveness of large language models in specialized applications.
In many cutting-edge applications, high-fidelity computational models prove to be too slow for practical use and are therefore replaced by much faster surrogate models. Recently, deep learning techniques have increasingly been utilized to accelerate such predictions. To enable learning on large-dimensional and complex data, specific neural network architectures have been developed, including convolutional and graph neural networks. In this work, we present a novel encoder-decoder geometric deep learning framework called MAgNET, which extends the well-known convolutional neural networks to accommodate arbitrary graph-structured data. MAgNET consists of innovative Multichannel Aggregation (MAg) layers and graph pooling/unpooling layers, forming a graph U-Net architecture that is analogous to convolutional U-Nets. We demonstrate the predictive capabilities of MAgNET in surrogate modeling for non-linear finite element simulations in the mechanics of solids.
This work reviews goal-oriented a posteriori error control, adaptivity and solver control for finite element approximations to boundary and initial-boundary value problems for stationary and non-stationary partial differential equations, respectively. In particular, coupled field problems with different physics may require simultaneously the accurate evaluation of several quantities of interest, which is achieved with multi-goal oriented error control. Sensitivity measures are obtained by solving an adjoint problem. Error localization is achieved with the help of a partition-of-unity. We also review and extend theoretical results for efficiency and reliability by employing a saturation assumption. The resulting adaptive algorithms allow to balance discretization and non-linear iteration errors, and are demonstrated for four applications: Poisson's problem, non-linear elliptic boundary value problems, stationary incompressible Navier-Stokes equations, and regularized parabolic $p$-Laplace initial-boundary value problems. Therein, different finite element discretizations in two different software libraries are utilized, which are partially accompanied with open-source implementations on GitHub.
This paper presents a formal verification guided approach for a principled design and implementation of robust and resilient learning-enabled systems. We focus on learning-enabled state estimation systems (LE-SESs), which have been widely used in robotics applications to determine the current state (e.g., location, speed, direction, etc.) of a complex system. The LE-SESs are networked systems, composed of a set of connected components including: Bayes filters for state estimation, and neural networks for processing sensory input. We study LE-SESs from the perspective of formal verification, which determines the satisfiabilty of a system model against the specified properties. Over LE-SESs, we investigate two key properties -- robustness and resilience -- and provide their formal definitions. To enable formal verification, we reduce the LE-SESs to a novel class of labelled transition systems, named {PO}^2-LTS in the paper, and formally express the properties as constrained optimisation objectives. We prove that the verification problems are NP-complete. Based on {PO}^2-LTS and the optimisation objectives, practical verification algorithms are developed to check the satisfiability of the properties on the LE-SESs. As a major case study, we interrogate a real-world dynamic tracking system which uses a single Kalman Filter (KF) -- a special case of Bayes filter -- to localise and track a ground vehicle. Its perception system, based on convolutional neural networks, processes a high-resolution Wide Area Motion Imagery (WAMI) data stream. Experimental results show that our algorithms can not only verify the properties of the WAMI tracking system but also provide representative examples, the latter of which inspired us to take an enhanced LE-SESs design where runtime monitors or joint-KFs are required. Experimental results confirm the improvement in the robustness of the enhanced design.
We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.