亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The software development industry is amid another disruptive paradigm change - adopting the use of generative AI (GAI) assistants for programming. Whilst AI is already used in various areas of software engineering, GAI technologies, such as GitHub Copilot and ChatGPT, have ignited peoples' imaginations (and fears). It is unclear how the industry will adapt, but the move to integrate these technologies by large software companies, such as Microsoft (GitHub, Bing) and Google (Bard), is a clear indication of intent and direction. We performed exploratory interviews with industry professionals to understand current practice and challenges, which we incorporate into our vision of a future of software development education and make some pedagogical recommendations.

相關內容

人工(gong)智(zhi)(zhi)能(neng)雜志(zhi)AI(Artificial Intelligence)是目前公認(ren)的(de)(de)(de)發(fa)表該(gai)(gai)領域最新(xin)研(yan)究成果的(de)(de)(de)主要(yao)國際論(lun)(lun)(lun)(lun)壇。該(gai)(gai)期(qi)刊歡迎有關AI廣泛方面的(de)(de)(de)論(lun)(lun)(lun)(lun)文,這些論(lun)(lun)(lun)(lun)文構(gou)成了整(zheng)個(ge)領域的(de)(de)(de)進(jin)步,也歡迎介紹人工(gong)智(zhi)(zhi)能(neng)應(ying)(ying)用的(de)(de)(de)論(lun)(lun)(lun)(lun)文,但重點應(ying)(ying)該(gai)(gai)放在(zai)新(xin)的(de)(de)(de)和新(xin)穎(ying)的(de)(de)(de)人工(gong)智(zhi)(zhi)能(neng)方法(fa)如何提高應(ying)(ying)用領域的(de)(de)(de)性能(neng),而不是介紹傳統人工(gong)智(zhi)(zhi)能(neng)方法(fa)的(de)(de)(de)另一個(ge)應(ying)(ying)用。關于應(ying)(ying)用的(de)(de)(de)論(lun)(lun)(lun)(lun)文應(ying)(ying)該(gai)(gai)描述一個(ge)原則性的(de)(de)(de)解(jie)決方案,強調其新(xin)穎(ying)性,并對正在(zai)開發(fa)的(de)(de)(de)人工(gong)智(zhi)(zhi)能(neng)技術進(jin)行(xing)深入的(de)(de)(de)評估。 官網地址(zhi):

With the increasing penetration of machine learning applications in critical decision-making areas, calls for algorithmic fairness are more prominent. Although there have been various modalities to improve algorithmic fairness through learning with fairness constraints, their performance does not generalize well in the test set. A performance-promising fair algorithm with better generalizability is needed. This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability. Most previous reweighing methods propose to assign a unified weight for each (sub)group. Rather, our method granularly models the distance from the sample predictions to the decision boundary. Our adaptive reweighing method prioritizes samples closer to the decision boundary and assigns a higher weight to improve the generalizability of fair classifiers. Extensive experiments are performed to validate the generalizability of our adaptive priority reweighing method for accuracy and fairness measures (i.e., equal opportunity, equalized odds, and demographic parity) in tabular benchmarks. We also highlight the performance of our method in improving the fairness of language and vision models. The code is available at //github.com/che2198/APW.

Summarization is an important application of large language models (LLMs). Most previous evaluation of summarization models has focused on their performance in content selection, grammaticality and coherence. However, it is well known that LLMs reproduce and reinforce harmful social biases. This raises the question: Do these biases affect model outputs in a relatively constrained setting like summarization? To help answer this question, we first motivate and introduce a number of definitions for biased behaviours in summarization models, along with practical measures to quantify them. Since we find biases inherent to the input document can confound our analysis, we additionally propose a method to generate input documents with carefully controlled demographic attributes. This allows us to sidestep this issue, while still working with somewhat realistic input documents. Finally, we apply our measures to summaries generated by both purpose-built summarization models and general purpose chat models. We find that content selection in single document summarization seems to be largely unaffected by bias, while hallucinations exhibit evidence of biases propagating to generated summaries.

We present a novel approach to address the challenge of generalization in offline reinforcement learning (RL), where the agent learns from a fixed dataset without any additional interaction with the environment. Specifically, we aim to improve the agent's ability to generalize to out-of-distribution goals. To achieve this, we propose to learn a dynamics model and check if it is equivariant with respect to a fixed type of transformation, namely translations in the state space. We then use an entropy regularizer to increase the equivariant set and augment the dataset with the resulting transformed samples. Finally, we learn a new policy offline based on the augmented dataset, with an off-the-shelf offline RL algorithm. Our experimental results demonstrate that our approach can greatly improve the test performance of the policy on the considered environments.

This thesis explores challenges in semantic parsing, specifically focusing on scenarios with limited data and computational resources. It offers solutions using techniques like automatic data curation, knowledge transfer, active learning, and continual learning. For tasks with no parallel training data, the thesis proposes generating synthetic training examples from structured database schemas. When there is abundant data in a source domain but limited parallel data in a target domain, knowledge from the source is leveraged to improve parsing in the target domain. For multilingual situations with limited data in the target languages, the thesis introduces a method to adapt parsers using a limited human translation budget. Active learning is applied to select source-language samples for manual translation, maximizing parser performance in the target language. In addition, an alternative method is also proposed to utilize machine translation services, supplemented by human-translated data, to train a more effective parser. When computational resources are limited, a continual learning approach is introduced to minimize training time and computational memory. This maintains the parser's efficiency in previously learned tasks while adapting it to new tasks, mitigating the problem of catastrophic forgetting. Overall, the thesis provides a comprehensive set of methods to improve semantic parsing in resource-constrained conditions.

The advancement of deep learning has facilitated the integration of Artificial Intelligence (AI) into clinical practices, particularly in computer-aided diagnosis. Given the pivotal role of medical images in various diagnostic procedures, it becomes imperative to ensure the responsible and secure utilization of AI techniques. However, the unauthorized utilization of AI for image analysis raises significant concerns regarding patient privacy and potential infringement on the proprietary rights of data custodians. Consequently, the development of pragmatic and cost-effective strategies that safeguard patient privacy and uphold medical image copyrights emerges as a critical necessity. In direct response to this pressing demand, we present a pioneering solution named Medical Image Adversarial watermarking (MIAD-MARK). Our approach introduces watermarks that strategically mislead unauthorized AI diagnostic models, inducing erroneous predictions without compromising the integrity of the visual content. Importantly, our method integrates an authorization protocol tailored for legitimate users, enabling the removal of the MIAD-MARK through encryption-generated keys. Through extensive experiments, we validate the efficacy of MIAD-MARK across three prominent medical image datasets. The empirical outcomes demonstrate the substantial impact of our approach, notably reducing the accuracy of standard AI diagnostic models to a mere 8.57% under white box conditions and 45.83% in the more challenging black box scenario. Additionally, our solution effectively mitigates unauthorized exploitation of medical images even in the presence of sophisticated watermark removal networks. Notably, those AI diagnosis networks exhibit a meager average accuracy of 38.59% when applied to images protected by MIAD-MARK, underscoring the robustness of our safeguarding mechanism.

The advent of large language models (LLMs) has revolutionized natural language processing, enabling the generation of coherent and contextually relevant human-like text. As LLMs increasingly power conversational agents used by the general public world-wide, the synthetic personality embedded in these models, by virtue of training on large amounts of human data, is becoming increasingly important. Since personality is a key factor determining the effectiveness of communication, we present a comprehensive method for administering and validating personality tests on widely-used LLMs, as well as for shaping personality in the generated text of such LLMs. Applying this method, we found: 1) personality measurements in the outputs of some LLMs under specific prompting configurations are reliable and valid; 2) evidence of reliability and validity of synthetic LLM personality is stronger for larger and instruction fine-tuned models; and 3) personality in LLM outputs can be shaped along desired dimensions to mimic specific human personality profiles. We discuss application and ethical implications of the measurement and shaping method, in particular regarding responsible AI.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司