亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the era of the Internet of Things (IoT), decentralized paradigms for machine learning are gaining prominence. In this paper, we introduce a federated learning model that capitalizes on the Euclidean distance between device model weights to assess their similarity and disparity. This is foundational for our system, directing the formation of coalitions among devices based on the closeness of their model weights. Furthermore, the concept of a barycenter, representing the average of model weights, helps in the aggregation of updates from multiple devices. We evaluate our approach using homogeneous and heterogeneous data distribution, comparing it against traditional federated learning averaging algorithm. Numerical results demonstrate its potential in offering structured, outperformed and communication-efficient model for IoT-based machine learning.

相關內容

Query Auto-Completion(QAC), as an important part of the modern search engine, plays a key role in complementing user queries and helping them refine their search intentions.Today's QAC systems in real-world scenarios face two major challenges:1)intention equivocality(IE): during the user's typing process,the prefix often contains a combination of characters and subwords, which makes the current intention ambiguous and difficult to model.2)intention transfer (IT):previous works make personalized recommendations based on users' historical sequences, but ignore the search intention transfer.However, the current intention extracted from prefix may be contrary to the historical preferences.

Learning-based methods have improved locomotion skills of quadruped robots through deep reinforcement learning. However, the sim-to-real gap and low sample efficiency still limit the skill transfer. To address this issue, we propose an efficient model-based learning framework that combines a world model with a policy network. We train a differentiable world model to predict future states and use it to directly supervise a Variational Autoencoder (VAE)-based policy network to imitate real animal behaviors. This significantly reduces the need for real interaction data and allows for rapid policy updates. We also develop a high-level network to track diverse commands and trajectories. Our simulated results show a tenfold sample efficiency increase compared to reinforcement learning methods such as PPO. In real-world testing, our policy achieves proficient command-following performance with only a two-minute data collection period and generalizes well to new speeds and paths.

In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms. Moreover, this infrastructure can also be used for other computer vision tasks, such as the evaluation of Visual (-Inertial) SLAM dynamic initialization, multi-object tracking, or automatic annotation. Yet, to work optimally, these functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor. In this study, we provide two novel solutions to estimate these calibration parameters. Firstly, we design an offline target-based method with high accuracy and consistency. Spatial-temporal parameters, camera intrinsic, and trajectory are optimized simultaneously. Then, we propose an online target-less method, eliminating the need for a calibration target and enabling the estimation of time-varying spatial-temporal parameters. Additionally, we perform detailed observability analysis for the target-less method. Our theoretical findings regarding observability are validated by simulation experiments and provide explainable guidelines for calibration. Finally, the accuracy and consistency of two proposed methods are evaluated with hand-held real-world datasets where traditional hand-eye calibration method do not work.

In this paper, the problem of joint transmission and computation resource allocation for probabilistic semantic communication (PSC) system with rate splitting multiple access (RSMA) is investigated. In the considered model, the base station (BS) needs to transmit a large amount of data to multiple users with RSMA. Due to limited communication resources, the BS is required to utilize semantic communication techniques to compress the large-sized data. The semantic communication is enabled by shared probability graphs between the BS and the users. The probability graph can be used to further compress the transmission data at the BS, while the received compressed semantic information can be recovered through using the same shared probability graph at each user side. The semantic information compression progress consumes additional computation power at the BS, which inevitably decreases the transmission power due to limited total power budget. Considering both the effect of semantic compression ratio and computation power, the semantic rate expression for RSMA is first obtained. Then, based on the obtained rate expression, an optimization problem is formulated with the aim of maximizing the sum of semantic rates of all users under total power, semantic compression ratio, and rate allocation constraints. To tackle this problem, an iterative algorithm is proposed, where the rate allocation and transmit beamforming design subproblem is solved using a successive convex approximation method, and the semantic compression ratio subproblem is addressed using a greedy algorithm. Numerical results validate the effectiveness of the proposed scheme.

In this paper, we propose a deep learning based model for Acoustic Anomaly Detection of Machines, the task for detecting abnormal machines by analysing the machine sound. By conducting extensive experiments, we indicate that multiple techniques of pseudo audios, audio segment, data augmentation, Mahalanobis distance, and narrow frequency bands, which mainly focus on feature engineering, are effective to enhance the system performance. Among the evaluating techniques, the narrow frequency bands presents a significant impact. Indeed, our proposed model, which focuses on the narrow frequency bands, outperforms the DCASE baseline on the benchmark dataset of DCASE 2022 Task 2 Development set. The important role of the narrow frequency bands indicated in this paper inspires the research community on the task of Acoustic Anomaly Detection of Machines to further investigate and propose novel network architectures focusing on the frequency bands.

In this paper, we introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system, given by an ordinary differential equation (ODE), from observed state trajectories. To achieve better generalization with fewer training samples, SymODEN incorporates appropriate inductive bias by designing the associated computation graph in a physics-informed manner. In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way, which can then be leveraged to draw insight about relevant physical aspects of the system, such as mass and potential energy. In addition, we propose a parametrization which can enforce this Hamiltonian formalism even when the generalized coordinate data is embedded in a high-dimensional space or we can only access velocity data instead of generalized momentum. This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.

Value Sensitive Design (VSD) is a framework for integrating human values throughout the technology design process. In parallel, Responsible AI (RAI) advocates for the development of systems aligning with ethical values, such as fairness and transparency. In this study, we posit that a VSD approach is not only compatible, but also advantageous to the development of RAI toolkits. To empirically assess this hypothesis, we conducted four workshops involving 17 early-career AI researchers. Our aim was to establish links between VSD and RAI values while examining how existing toolkits incorporate VSD principles in their design. Our findings show that collaborative and educational design features within these toolkits, including illustrative examples and open-ended cues, facilitate an understanding of human and ethical values, and empower researchers to incorporate values into AI systems. Drawing on these insights, we formulated six design guidelines for integrating VSD values into the development of RAI toolkits.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of pre-trained transformer based models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. On three classification benchmarks, pre-trained Seq2Seq model outperforms other models. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司