亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we describe VivesDebate-Speech, a corpus of spoken argumentation created to leverage audio features for argument mining tasks. The creation of this corpus represents an important contribution to the intersection of speech processing and argument mining communities, and one of the most complete publicly available resources in this topic. Moreover, we have performed a set of first-of-their-kind experiments which show an improvement when integrating audio features into the argument mining pipeline. The provided results can be used as a baseline for future research.

相關內容

In this paper, we first present the character texture generation system \textit{Minecraft-ify}, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at //gh-bumsookim.github.io/Minecraft-ify/

This paper introduces Bespoke Non-Stationary (BNS) Solvers, a solver distillation approach to improve sample efficiency of Diffusion and Flow models. BNS solvers are based on a family of non-stationary solvers that provably subsumes existing numerical ODE solvers and consequently demonstrate considerable improvement in sample approximation (PSNR) over these baselines. Compared to model distillation, BNS solvers benefit from a tiny parameter space ($<$200 parameters), fast optimization (two orders of magnitude faster), maintain diversity of samples, and in contrast to previous solver distillation approaches nearly close the gap from standard distillation methods such as Progressive Distillation in the low-medium NFE regime. For example, BNS solver achieves 45 PSNR / 1.76 FID using 16 NFE in class-conditional ImageNet-64. We experimented with BNS solvers for conditional image generation, text-to-image generation, and text-2-audio generation showing significant improvement in sample approximation (PSNR) in all.

In this work, we develop a pipeline for historical-psychological text analysis in classical Chinese. Humans have produced texts in various languages for thousands of years; however, most of the computational literature is focused on contemporary languages and corpora. The emerging field of historical psychology relies on computational techniques to extract aspects of psychology from historical corpora using new methods developed in natural language processing (NLP). The present pipeline, called Contextualized Construct Representations (CCR), combines expert knowledge in psychometrics (i.e., psychological surveys) with text representations generated via transformer-based language models to measure psychological constructs such as traditionalism, norm strength, and collectivism in classical Chinese corpora. Considering the scarcity of available data, we propose an indirect supervised contrastive learning approach and build the first Chinese historical psychology corpus (C-HI-PSY) to fine-tune pre-trained models. We evaluate the pipeline to demonstrate its superior performance compared with other approaches. The CCR method outperforms word-embedding-based approaches across all of our tasks and exceeds prompting with GPT-4 in most tasks. Finally, we benchmark the pipeline against objective, external data to further verify its validity.

While recent research has made significant progress in speech-driven talking face generation, the quality of the generated video still lags behind that of real recordings. One reason for this is the use of handcrafted intermediate representations like facial landmarks and 3DMM coefficients, which are designed based on human knowledge and are insufficient to precisely describe facial movements. Additionally, these methods require an external pretrained model for extracting these representations, whose performance sets an upper bound on talking face generation. To address these limitations, we propose a novel method called DAE-Talker that leverages data-driven latent representations obtained from a diffusion autoencoder (DAE). DAE contains an image encoder that encodes an image into a latent vector and a DDIM image decoder that reconstructs the image from it. We train our DAE on talking face video frames and then extract their latent representations as the training target for a Conformer-based speech2latent model. This allows DAE-Talker to synthesize full video frames and produce natural head movements that align with the content of speech, rather than relying on a predetermined head pose from a template video. We also introduce pose modelling in speech2latent for pose controllability. Additionally, we propose a novel method for generating continuous video frames with the DDIM image decoder trained on individual frames, eliminating the need for modelling the joint distribution of consecutive frames directly. Our experiments show that DAE-Talker outperforms existing popular methods in lip-sync, video fidelity, and pose naturalness. We also conduct ablation studies to analyze the effectiveness of the proposed techniques and demonstrate the pose controllability of DAE-Talker.

Large Language Models (LLMs) frequently struggle with complex reasoning tasks, failing to construct logically sound steps towards the solution. In response to this behavior, users often try prompting the LLMs repeatedly in hopes of reaching a better response. This paper studies such repetitive behavior and its effect by defining a novel setting, Chain-of-Feedback (CoF). The setting takes questions that require multi-step reasoning as an input. Upon response, we repetitively prompt meaningless feedback (e.g. 'make another attempt') requesting additional trials. Surprisingly, our preliminary results show that repeated meaningless feedback gradually decreases the quality of the responses, eventually leading to a larger deviation from the intended outcome. To alleviate these troubles, we propose a novel method, Recursive Chain-of-Feedback (R-CoF). Following the logic of recursion in computer science, R-CoF recursively revises the initially incorrect response by breaking down each incorrect reasoning step into smaller individual problems. Our preliminary results show that majority of questions that LLMs fail to respond correctly can be answered using R-CoF without any sample data outlining the logical process.

In this paper, we demonstrate that an inherent waveform pattern in the attention allocation of large language models (LLMs) significantly affects their performance in tasks demanding a high degree of context awareness, such as utilizing LLMs for tool-use. Specifically, the crucial information in the context will be potentially overlooked by model when it is positioned in the trough zone of the attention waveform, leading to decreased performance. To address this issue, we propose a novel inference method named Attention Buckets. It allows LLMs to process their input through multiple parallel processes. Each process utilizes a distinct base angle for the rotary position embedding, thereby creating a unique attention waveform. By compensating an attention trough of a particular process with an attention peak of another process, our approach enhances LLM's awareness to various contextual positions, thus mitigating the risk of overlooking crucial information. In the largest tool-use benchmark, our method elevates a 7B model to achieve state-of-the-art performance, comparable to that of GPT-4. On other benchmarks and some RAG tasks, which also demand a thorough understanding of contextual content, Attention Buckets also exhibited notable enhancements in performance.

The field of Computer Vision (CV) is increasingly shifting towards ``high-level'' visual sensemaking tasks, yet the exact nature of these tasks remains unclear and tacit. This survey paper addresses this ambiguity by systematically reviewing research on high-level visual understanding, focusing particularly on Abstract Concepts (ACs) in automatic image classification. Our survey contributes in three main ways: Firstly, it clarifies the tacit understanding of high-level semantics in CV through a multidisciplinary analysis, and categorization into distinct clusters, including commonsense, emotional, aesthetic, and inductive interpretative semantics. Secondly, it identifies and categorizes computer vision tasks associated with high-level visual sensemaking, offering insights into the diverse research areas within this domain. Lastly, it examines how abstract concepts such as values and ideologies are handled in CV, revealing challenges and opportunities in AC-based image classification. Notably, our survey of AC image classification tasks highlights persistent challenges, such as the limited efficacy of massive datasets and the importance of integrating supplementary information and mid-level features. We emphasize the growing relevance of hybrid AI systems in addressing the multifaceted nature of AC image classification tasks. Overall, this survey enhances our understanding of high-level visual reasoning in CV and lays the groundwork for future research endeavors.

We present a unified probabilistic formulation for diffusion-based image editing, where a latent variable is edited in a task-specific manner and generally deviates from the corresponding marginal distribution induced by the original stochastic or ordinary differential equation (SDE or ODE). Instead, it defines a corresponding SDE or ODE for editing. In the formulation, we prove that the Kullback-Leibler divergence between the marginal distributions of the two SDEs gradually decreases while that for the ODEs remains as the time approaches zero, which shows the promise of SDE in image editing. Inspired by it, we provide the SDE counterparts for widely used ODE baselines in various tasks including inpainting and image-to-image translation, where SDE shows a consistent and substantial improvement. Moreover, we propose SDE-Drag -- a simple yet effective method built upon the SDE formulation for point-based content dragging. We build a challenging benchmark (termed DragBench) with open-set natural, art, and AI-generated images for evaluation. A user study on DragBench indicates that SDE-Drag significantly outperforms our ODE baseline, existing diffusion-based methods, and the renowned DragGAN. Our results demonstrate the superiority and versatility of SDE in image editing and push the boundary of diffusion-based editing methods.

The rapid advancement of large language models (LLMs) has led to a new era marked by the development of autonomous applications in real-world scenarios, which drives innovation in creating advanced web agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we establish a new benchmark by compiling real-world tasks from 15 popular websites and introduce an automatic evaluation protocol leveraging multimodal understanding abilities of GPT-4V to evaluate open-ended web agents. We show that WebVoyager achieves a 59.1% task success rate on our benchmark, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager. The proposed automatic evaluation metric achieves 85.3% agreement with human judgment, indicating its effectiveness in providing reliable and accurate assessments of web agents.

Collecting high-quality studio recordings of audio is challenging, which limits the language coverage of text-to-speech (TTS) systems. This paper proposes a framework for scaling a multilingual TTS model to 100+ languages using found data without supervision. The proposed framework combines speech-text encoder pretraining with unsupervised training using untranscribed speech and unspoken text data sources, thereby leveraging massively multilingual joint speech and text representation learning. Without any transcribed speech in a new language, this TTS model can generate intelligible speech in >30 unseen languages (CER difference of <10% to ground truth). With just 15 minutes of transcribed, found data, we can reduce the intelligibility difference to 1% or less from the ground-truth, and achieve naturalness scores that match the ground-truth in several languages.

北京阿比特科技有限公司