We consider the numerical approximation of the inertial Landau-Lifshitz-Gilbert equation (iLLG), which describes the dynamics of the magnetization in ferromagnetic materials at subpicosecond time scales. We propose and analyze two fully discrete numerical schemes: The first method is based on a reformulation of the problem as a linear constrained variational formulation for the linear velocity. The second method exploits a reformulation of the problem as a first order system in time for the magnetization and the angular momentum. Both schemes are implicit, based on first-order finite elements, and generate approximations satisfying the unit-length constraint of iLLG at the vertices of the underlying mesh. For both methods, we prove convergence of the approximations towards a weak solution of the problem. Numerical experiments validate the theoretical results and show the applicability of the methods for the simulation of ultrafast magnetic processes.
In Chen and Zhou 2021, they consider an inference problem for an Ornstein-Uhlenbeck process driven by a general one-dimensional centered Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. The starting point of this paper is a new relationship between the inner product of $\mathfrak{H}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. Based on this relationship and some known estimation of the inner product of $\mathfrak{H}_1$, we prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Ess\'{e}en bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter constructed from the continuous observations.
We present a numerical stability analysis of the immersed boundary(IB) method for a special case which is constructed so that Fourier analysis is applicable. We examine the stability of the immersed boundary method with the discrete Fourier transforms defined differently on the fluid grid and the boundary grid. This approach gives accurate theoretical results about the stability boundary since it takes the effects of the spreading kernel of the immersed boundary method on the numerical stability into account. In this paper, the spreading kernel is the standard 4-point IB delta function. A three-dimensional incompressible viscous flow and a no-slip planar boundary are considered. The case of a planar elastic membrane is also analyzed using the same analysis framework and it serves as an example of many possible generalizations of our theory. We present some numerical results and show that the observed stability behaviors are consistent with what are predicted by our theory.
The aim of this paper is to apply a high-order discontinuous-in-time scheme to second-order hyperbolic partial differential equations (PDEs). We first discretize the PDEs in time while keeping the spatial differential operators undiscretized. The well-posedness of this semi-discrete scheme is analyzed and a priori error estimates are derived in the energy norm. We then combine this $hp$-version discontinuous Galerkin method for temporal discretization with an $H^1$-conforming finite element approximation for the spatial variables to construct a fully discrete scheme. A prior error estimates are derived both in the energy norm and the $L^2$-norm. Numerical experiments are presented to verify the theoretical results.
We extend the FE-DMN method to fully coupled thermomechanical two-scale simulations of composite materials. In particular, every Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN). Such a DMN serves as a high-fidelity surrogate model for full-field solutions on the microscopic scale of inelastic, non-isothermal constituents. Building on the homogenization framework of Chatzigeorgiou et al. [Int. J. Plast, vol. 81, pp. 18--39, 2016], we extend the framework of DMNs to thermomechanical composites by incorporating the two-way thermomechanical coupling, i.e., the coupling from the macroscopic onto the microscopic scale and vice versa, into the framework. We provide details on the efficient implementation of our approach as a user-material subroutine (UMAT). We validate our approach on the microscopic scale and show that DMNs predict the effective stress, the effective dissipation and the change of the macroscopic absolute temperature with high accuracy. After validation, we demonstrate the capabilities of our approach on a concurrent thermomechanical two-scale simulation on the macroscopic component scale.
We propose and analyse an augmented mixed finite element method for the Navier--Stokes equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and no-slip boundary conditions. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we use a fixed point strategies to show the existence and uniqueness of continuous and discrete solutions under the assumption of sufficiently small data. The method is constructed using any compatible finite element pair (conforming or non-conforming) for velocity and pressure as dictated by Stokes inf-sup stability, while for vorticity any generic discrete space (of arbitrary order) can be used. We establish optimal a priori error estimates. Finally, we provide a set of numerical tests in 2D and 3D illustrating the behaviour of the scheme as well as verifying the theoretical convergence rates.
It is necessary to use more general models than the classical Fourier heat conduction law to describe small-scale thermal conductivity processes. The effects of heat flow memory and heat capacity memory (internal energy) in solids are considered in first-order integrodifferential evolutionary equations with difference-type kernels. The main difficulties in applying such nonlocal in-time mathematical models are associated with the need to work with a solution throughout the entire history of the process. The paper develops an approach to transforming a nonlocal problem into a computationally simpler local problem for a system of first-order evolution equations. Such a transition is applicable for heat conduction problems with memory if the relaxation functions of the heat flux and heat capacity are represented as a sum of exponentials. The correctness of the auxiliary linear problem is ensured by the obtained estimates of the stability of the solution concerning the initial data and the right-hand side in the corresponding Hilbert spaces. The study's main result is to prove the unconditional stability of the proposed two-level scheme with weights for the evolutionary system of equations for modeling heat conduction in solid media with memory. In this case, finding an approximate solution on a new level in time is not more complicated than the classical heat equation. The numerical solution of a model one-dimensional in space heat conduction problem with memory effects is presented.
We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton-like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long-standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.
We prove necessary density conditions for sampling in spectral subspaces of a second order uniformly elliptic differential operator on $R^d$ with slowly oscillating symbol. For constant coefficient operators, these are precisely Landaus necessary density conditions for bandlimited functions, but for more general elliptic differential operators it has been unknown whether such a critical density even exists. Our results prove the existence of a suitable critical sampling density and compute it in terms of the geometry defined by the elliptic operator. In dimension 1, functions in a spectral subspace can be interpreted as functions with variable bandwidth, and we obtain a new critical density for variable bandwidth. The methods are a combination of the spectral theory and the regularity theory of elliptic partial differential operators, some elements of limit operators, certain compactifications of $R^d $, and the theory of reproducing kernel Hilbert spaces.
We propose an efficient, accurate and robust IMEX solver for the compressible Navier-Stokes equation with general equation of state. The method, which is based on an $h-$adaptive Discontinuos Galerkin spatial discretization and on an Additive Runge Kutta IMEX method for time discretization, is tailored for low Mach number applications and allows to simulate low Mach regimes at a significantly reduced computational cost, while maintaining full second order accuracy also for higher Mach number regimes. The method has been implemented in the framework of the deal.II numerical library, whose adaptive mesh refinement capabilities are employed to enhance efficiency. Refinement indicators appropriate for real gas phenomena have been introduced. A number of numerical experiments on classical benchmarks for compressible flows and their extension to real gases demonstrate the properties of the proposed method.
In this paper, we consider a boundary value problem (BVP) for a fourth order nonlinear functional integro-differential equation. We establish the existence and uniqueness of solution and construct a numerical method for solving it. We prove that the method is of second order accuracy and obtain an estimate for the total error. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the numerical method.