亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Electric vehicles (EVs) play critical roles in autonomous mobility-on-demand (AMoD) systems, but their unique charging patterns increase the model uncertainties in AMoD systems (e.g. state transition probability). Since there usually exists a mismatch between the training and test (true) environments, incorporating model uncertainty into system design is of critical importance in real-world applications. However, model uncertainties have not been considered explicitly in EV AMoD system rebalancing by existing literature yet and remain an urgent and challenging task. In this work, we design a robust and constrained multi-agent reinforcement learning (MARL) framework with transition kernel uncertainty for the EV rebalancing and charging problem. We then propose a robust and constrained MARL algorithm (ROCOMA) that trains a robust EV rebalancing policy to balance the supply-demand ratio and the charging utilization rate across the whole city under state transition uncertainty. Experiments show that the ROCOMA can learn an effective and robust rebalancing policy. It outperforms non-robust MARL methods when there are model uncertainties. It increases the system fairness by 19.6% and decreases the rebalancing costs by 75.8%.

相關內容

Deep Neural Networks (DNNs) have been widely used to perform real-world tasks in cyber-physical systems such as Autonomous Diving Systems (ADS). Ensuring the correct behavior of such DNN-Enabled Systems (DES) is a crucial topic. Online testing is one of the promising modes for testing such systems with their application environments (simulated or real) in a closed loop taking into account the continuous interaction between the systems and their environments. However, the environmental variables (e.g., lighting conditions) that might change during the systems' operation in the real world, causing the DES to violate requirements (safety, functional), are often kept constant during the execution of an online test scenario due to the two major challenges: (1) the space of all possible scenarios to explore would become even larger if they changed and (2) there are typically many requirements to test simultaneously. In this paper, we present MORLOT (Many-Objective Reinforcement Learning for Online Testing), a novel online testing approach to address these challenges by combining Reinforcement Learning (RL) and many-objective search. MORLOT leverages RL to incrementally generate sequences of environmental changes while relying on many-objective search to determine the changes so that they are more likely to achieve any of the uncovered objectives. We empirically evaluate MORLOT using CARLA, a high-fidelity simulator widely used for autonomous driving research, integrated with Transfuser, a DNN-enabled ADS for end-to-end driving. The evaluation results show that MORLOT is significantly more effective and efficient than alternatives with a large effect size. In other words, MORLOT is a good option to test DES with dynamically changing environments while accounting for multiple safety requirements.

There is a growing interest in developing automated agents that can work alongside humans. In addition to completing the assigned task, such an agent will undoubtedly be expected to behave in a manner that is preferred by the human. This requires the human to communicate their preferences to the agent. To achieve this, the current approaches either require the users to specify the reward function or the preference is interactively learned from queries that ask the user to compare trajectories. The former approach can be challenging if the internal representation used by the agent is inscrutable to the human while the latter is unnecessarily cumbersome for the user if their preference can be specified more easily in symbolic terms. In this work, we propose PRESCA (PREference Specification through Concept Acquisition), a system that allows users to specify their preferences in terms of concepts that they understand. PRESCA maintains a set of such concepts in a shared vocabulary. If the relevant concept is not in the shared vocabulary, then it is learned. To make learning a new concept more efficient, PRESCA leverages causal associations between the target concept and concepts that are already known. Additionally, the effort of learning the new concept is amortized by adding the concept to the shared vocabulary for supporting preference specification in future interactions. We evaluate PRESCA by using it on a Minecraft environment and show that it can be effectively used to make the agent align with the user's preference.

Deep neural networks have seen tremendous success over the last years. Since the training is performed on digital hardware, in this paper, we analyze what actually can be computed on current hardware platforms modeled as Turing machines, which would lead to inherent restrictions of deep learning. For this, we focus on the class of inverse problems, which, in particular, encompasses any task to reconstruct data from measurements. We prove that finite-dimensional inverse problems are not Banach-Mazur computable for small relaxation parameters. In fact, our result even holds for Borel-Turing computability., i.e., there does not exist an algorithm which performs the training of a neural network on digital hardware for any given accuracy. Even more, our results introduce a lower bound on the accuracy that can be obtained algorithmically. This establishes a conceptual barrier on the capabilities of neural networks for finite-dimensional inverse problems given that the computations are performed on digital hardware.

Cyber vulnerability management is a critical function of a cybersecurity operations center (CSOC) that helps protect organizations against cyber-attacks on their computer and network systems. Adversaries hold an asymmetric advantage over the CSOC, as the number of deficiencies in these systems is increasing at a significantly higher rate compared to the expansion rate of the security teams to mitigate them in a resource-constrained environment. The current approaches are deterministic and one-time decision-making methods, which do not consider future uncertainties when prioritizing and selecting vulnerabilities for mitigation. These approaches are also constrained by the sub-optimal distribution of resources, providing no flexibility to adjust their response to fluctuations in vulnerability arrivals. We propose a novel framework, Deep VULMAN, consisting of a deep reinforcement learning agent and an integer programming method to fill this gap in the cyber vulnerability management process. Our sequential decision-making framework, first, determines the near-optimal amount of resources to be allocated for mitigation under uncertainty for a given system state and then determines the optimal set of prioritized vulnerability instances for mitigation. Our proposed framework outperforms the current methods in prioritizing the selection of important organization-specific vulnerabilities, on both simulated and real-world vulnerability data, observed over a one-year period.

Traffic signal control has the potential to reduce congestion in dynamic networks. Recent studies show that traffic signal control with reinforcement learning (RL) methods can significantly reduce the average waiting time. However, a shortcoming of existing methods is that they require model retraining for new intersections with different structures. In this paper, we propose a novel reinforcement learning approach with augmented data (ADLight) to train a universal model for intersections with different structures. We propose a new agent design incorporating features on movements and actions with set current phase duration to allow the generalized model to have the same structure for different intersections. A new data augmentation method named \textit{movement shuffle} is developed to improve the generalization performance. We also test the universal model with new intersections in Simulation of Urban MObility (SUMO). The results show that the performance of our approach is close to the models trained in a single environment directly (only a 5% loss of average waiting time), and we can reduce more than 80% of training time, which saves a lot of computational resources in scalable operations of traffic lights.

Deep Reinforcement Learning (RL) is mainly studied in a setting where the training and the testing environments are similar. But in many practical applications, these environments may differ. For instance, in control systems, the robot(s) on which a policy is learned might differ from the robot(s) on which a policy will run. It can be caused by different internal factors (e.g., calibration issues, system attrition, defective modules) or also by external changes (e.g., weather conditions). There is a need to develop RL methods that generalize well to variations of the training conditions. In this article, we consider the simplest yet hard to tackle generalization setting where the test environment is unknown at train time, forcing the agent to adapt to the system's new dynamics. This online adaptation process can be computationally expensive (e.g., fine-tuning) and cannot rely on meta-RL techniques since there is just a single train environment. To do so, we propose an approach where we learn a subspace of policies within the parameter space. This subspace contains an infinite number of policies that are trained to solve the training environment while having different parameter values. As a consequence, two policies in that subspace process information differently and exhibit different behaviors when facing variations of the train environment. Our experiments carried out over a large variety of benchmarks compare our approach with baselines, including diversity-based methods. In comparison, our approach is simple to tune, does not need any extra component (e.g., discriminator) and learns policies able to gather a high reward on unseen environments.

Motion planning and control are crucial components of robotics applications. Here, spatio-temporal hard constraints like system dynamics and safety boundaries (e.g., obstacles in automated driving) restrict the robot's motions. Direct methods from optimal control solve a constrained optimization problem. However, in many applications finding a proper cost function is inherently difficult because of the weighting of partially conflicting objectives. On the other hand, Imitation Learning (IL) methods such as Behavior Cloning (BC) provide a intuitive framework for learning decision-making from offline demonstrations and constitute a promising avenue for planning and control in complex robot applications. Prior work primarily relied on soft-constraint approaches, which use additional auxiliary loss terms describing the constraints. However, catastrophic safety-critical failures might occur in out-of-distribution (OOD) scenarios. This work integrates the flexibility of IL with hard constraint handling in optimal control. Our approach constitutes a general framework for constraint robotic motion planning and control using offline IL. Hard constraints are integrated into the learning problem in a differentiable manner, via explicit completion and gradient-based correction. Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.

Designing reinforcement learning (RL) agents is typically a difficult process that requires numerous design iterations. Learning can fail for a multitude of reasons, and standard RL methods provide too few tools to provide insight into the exact cause. In this paper, we show how to integrate value decomposition into a broad class of actor-critic algorithms and use it to assist in the iterative agent-design process. Value decomposition separates a reward function into distinct components and learns value estimates for each. These value estimates provide insight into an agent's learning and decision-making process and enable new training methods to mitigate common problems. As a demonstration, we introduce SAC-D, a variant of soft actor-critic (SAC) adapted for value decomposition. SAC-D maintains similar performance to SAC, while learning a larger set of value predictions. We also introduce decomposition-based tools that exploit this information, including a new reward influence metric, which measures each reward component's effect on agent decision-making. Using these tools, we provide several demonstrations of decomposition's use in identifying and addressing problems in the design of both environments and agents. Value decomposition is broadly applicable and easy to incorporate into existing algorithms and workflows, making it a powerful tool in an RL practitioner's toolbox.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

北京阿比特科技有限公司