亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Eddy detection is a critical task for ocean scientists to understand and analyze ocean circulation. In this paper, we introduce a hybrid eddy detection approach that combines sea surface height (SSH) and velocity fields with geometric criteria defining eddy behavior. Our approach searches for SSH minima and maxima, which oceanographers expect to find at the center of eddies. Geometric criteria are used to verify expected velocity field properties, such as net rotation and symmetry, by tracing velocity components along a circular path surrounding each eddy center. Progressive searches outward and into deeper layers yield each eddy's 3D region of influence. Isolation of each eddy structure from the dataset, using it's cylindrical footprint, facilitates visualization of internal eddy structures using horizontal velocity, vertical velocity, temperature and salinity. A quantitative comparison of Okubo-Weiss vorticity (OW) thresholding, the standard winding angle, and this new SSH-velocity hybrid methods of eddy detection as applied to the Red Sea dataset suggests that detection results are highly dependent on the choices of method, thresholds, and criteria. Our new SSH-velocity hybrid detection approach has the advantages of providing eddy structures with verified rotation properties, 3D visualization of the internal structure of physical properties, and rapid efficient estimations of eddy footprints without calculating streamlines. Our approach combines visualization of internal structure and tracking overall movement to support the study of the transport mechanisms key to understanding the interaction of nutrient distribution and ocean circulation. Our method is applied to three different datasets to showcase the generality of its application.

相關內容

Surface 是微軟公(gong)司( )旗下一系(xi)列使(shi)用 Windows 10(早期為 Windows 8.X)操作(zuo)系(xi)統的電腦產品,目前(qian)有 Surface、Surface Pro 和(he) Surface Book 三個系(xi)列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉(shan)磯舉行的記者(zhe)會,2012 年 10 月 26 日上市銷售。

In this paper, we propose a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) and energy buffer aided multiple-input single-output (MISO) simultaneous wireless information and power transfer (SWIPT) non-orthogonal multiple access (NOMA) system, which consists of a STAR-RIS, an access point (AP), and reflection users and transmission users with energy buffers. In the proposed system, the multi-antenna AP can transmit information and energy to several single-antenna reflection and transmission users simultaneously in a NOMA fashion, where the power transfer and information transmission states of the users are modeled using Markov chains. The reflection and transmission users harvest and store the energy in energy buffers as additional power supplies. The power outage probability, information outage probability, sum throughput, and joint outage probability closed-form expressions of the proposed system are derived over Nakagami-m fading channels, which are validated via simulations. Results demonstrate that the proposed system achieves better performance in comparison to the STAR-RIS aided MISO SWIPT-NOMA buffer-less, conventional RIS and energy buffer aided MISO SWIPT-NOMA, and STAR-RIS and energy buffer aided MISO SWIPT-time-division multiple access (TDMA) systems. Furthermore, a particle swarm optimization based power allocation (PSO-PA) algorithm is designed to maximize the sum throughput with a constraint on the joint outage probability. Simulation results illustrate that the proposed PSO-PA algorithm can achieve an improved sum throughput performance of the proposed system.

In this paper, we formulate acoustic howling suppression (AHS) as a supervised learning problem and propose a deep learning approach, called Deep AHS, to address it. Deep AHS is trained in a teacher forcing way which converts the recurrent howling suppression process into an instantaneous speech separation process to simplify the problem and accelerate the model training. The proposed method utilizes properly designed features and trains an attention based recurrent neural network (RNN) to extract the target signal from the microphone recording, thus attenuating the playback signal that may lead to howling. Different training strategies are investigated and a streaming inference method implemented in a recurrent mode used to evaluate the performance of the proposed method for real-time howling suppression. Deep AHS avoids howling detection and intrinsically prohibits howling from happening, allowing for more flexibility in the design of audio systems. Experimental results show the effectiveness of the proposed method for howling suppression under different scenarios.

In this paper, we consider the problem of a swarm traveling between two points as fast as possible in an unknown environment cluttered with obstacles. Potential applications include search-and-rescue operations where damaged environments are typical. We present swarm generalizations, called SwarmCom, SwarmBug1, and SwarmBug2, of the classical path generation algorithms Com, Bug1, and Bug2. These algorithms were developed for unknown environments and require low computational power and memory storage, thereby freeing up resources for other tasks. We show the upper bound of the worst-case travel time for the first agent in the swarm to reach the target point for SwarmBug1. For SwarmBug2, we show that the algorithm underperforms in terms of worst-case travel time compared to SwarmBug1. For SwarmCom, we show that there exists a trivial scene for which the algorithm will not halt, and it thus has no performance guarantees. Moreover, by comparing the upper bound of the travel time for SwarmBug1 with a universal lower bound for any path generation algorithm, it is shown that in the limit when the number of agents in the swarm approaches infinity, no other algorithm has strictly better worst-case performance than SwarmBug1 and the universal lower bound is tight.

Anomaly detection is crucial in various domains, such as finance, healthcare, and cybersecurity. In this paper, we propose a novel deep anomaly detection method for tabular data that leverages Non-Parametric Transformers (NPTs), a model initially proposed for supervised tasks, to capture both feature-feature and sample-sample dependencies. In a reconstruction-based framework, we train the NPT to reconstruct masked features of normal samples. In a non-parametric fashion, we leverage the whole training set during inference and use the model's ability to reconstruct the masked features during to generate an anomaly score. To the best of our knowledge, our proposed method is the first to successfully combine feature-feature and sample-sample dependencies for anomaly detection on tabular datasets. We evaluate our method on an extensive benchmark of 31 tabular datasets and demonstrate that our approach outperforms existing state-of-the-art methods based on the F1-score and AUROC by a significant margin.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

北京阿比特科技有限公司