亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study introduces a structural-based training approach for CNN-based algorithms in single-molecule localization microscopy (SMLM) and 3D object reconstruction. We compare this approach with the traditional random-based training method, utilizing the LUENN package as our AI pipeline. The quantitative evaluation demonstrates significant improvements in detection rate and localization precision with the structural-based training approach, particularly in varying signal-to-noise ratios (SNRs). Moreover, the method effectively removes checkerboard artifacts, ensuring more accurate 3D reconstructions. Our findings highlight the potential of the structural-based training approach to advance super-resolution microscopy and deepen our understanding of complex biological systems at the nanoscale.

相關內容

Simply-verifiable mathematical conditions for existence, uniqueness and explicit analytical computation of minimal adversarial paths (MAP) and minimal adversarial distances (MAD) for (locally) uniquely-invertible classifiers, for generalized linear models (GLM), and for entropic AI (EAI) are formulated and proven. Practical computation of MAP and MAD, their comparison and interpretations for various classes of AI tools (for neuronal networks, boosted random forests, GLM and EAI) are demonstrated on the common synthetic benchmarks: on a double Swiss roll spiral and its extensions, as well as on the two biomedical data problems (for the health insurance claim predictions, and for the heart attack lethality classification). On biomedical applications it is demonstrated how MAP provides unique minimal patient-specific risk-mitigating interventions in the predefined subsets of accessible control variables.

Feedforward neural networks (FNNs) are typically viewed as pure prediction algorithms, and their strong predictive performance has led to their use in many machine-learning applications. However, their flexibility comes with an interpretability trade-off; thus, FNNs have been historically less popular among statisticians. Nevertheless, classical statistical theory, such as significance testing and uncertainty quantification, is still relevant. Supplementing FNNs with methods of statistical inference, and covariate-effect visualisations, can shift the focus away from black-box prediction and make FNNs more akin to traditional statistical models. This can allow for more inferential analysis, and, hence, make FNNs more accessible within the statistical-modelling context.

We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$. Numerical analysis and experiments are provided to study its performance. Our method has the same symbol $|\xi|^\alpha$ as the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$ at the discrete level, and thus it can be viewed as the exact discrete analogue of the fractional Laplacian. This {\it unique feature} distinguishes our method from other existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral methods in the literature, which are usually limited to periodic boundary conditions (see Remark \ref{remark0}). Numerical analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness matrix, and thus fast algorithms can be developed for efficient matrix-vector products. The computational complexity is ${\mathcal O}(2N\log(2N))$, and the memory storage is ${\mathcal O}(N)$ with $N$ the total number of points. Extensive numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving various problems.

This paper presents a novel centralized, variational data assimilation approach for calibrating transient dynamic models in electrical power systems, focusing on load model parameters. With the increasing importance of inverter-based resources, assessing power systems' dynamic performance under disturbances has become challenging, necessitating robust model calibration methods. The proposed approach expands on previous Bayesian frameworks by establishing a posterior distribution of parameters using an approximation around the maximum a posteriori value. We illustrate the efficacy of our method by generating events of varying intensity, highlighting its ability to capture the systems' evolution accurately and with associated uncertainty estimates. This research improves the precision of dynamic performance assessments in modern power systems, with potential applications in managing uncertainties and optimizing system operations.

We discuss techniques of estimation and inference for nonlinear cohort panels with learning from experience, showing, inter alia, the consistency and asymptotic normality of the nonlinear least squares estimator employed in the seminal paper by Malmendier and Nagel (2016, QJE). Potential pitfalls for hypothesis testing are identified and solutions proposed. Monte Carlo simulations verify the properties of the estimator and corresponding test statistics in finite samples, while an application to a panel of survey expectations demonstrates the usefulness of the theory developed.

Statistical learning methods are widely utilized in tackling complex problems due to their flexibility, good predictive performance and its ability to capture complex relationships among variables. Additionally, recently developed automatic workflows have provided a standardized approach to implementing statistical learning methods across various applications. However these tools highlight a main drawbacks of statistical learning: its lack of interpretation in their results. In the past few years an important amount of research has been focused on methods for interpreting black box models. Having interpretable statistical learning methods is relevant to have a deeper understanding of the model. In problems were spatial information is relevant, combined interpretable methods with spatial data can help to get better understanding of the problem and interpretation of the results. This paper is focused in the individual conditional expectation (ICE-plot), a model agnostic methods for interpreting statistical learning models and combined them with spatial information. ICE-plot extension is proposed where spatial information is used as restriction to define Spatial ICE curves (SpICE). Spatial ICE curves are estimated using real data in the context of an economic problem concerning property valuation in Montevideo, Uruguay. Understanding the key factors that influence property valuation is essential for decision-making, and spatial data plays a relevant role in this regard.

We construct admissible polynomial meshes on piecewise polynomial or trigonometric curves of the complex plane, by mapping univariate Chebyshev points. Such meshes can be used for polynomial least-squares, for the extraction of Fekete-like and Leja-like interpolation sets, and also for the evaluation of their Lebesgue constants.

This study compares the performance of (1) fine-tuned models and (2) extremely large language models on the task of check-worthy claim detection. For the purpose of the comparison we composed a multilingual and multi-topical dataset comprising texts of various sources and styles. Building on this, we performed a benchmark analysis to determine the most general multilingual and multi-topical claim detector. We chose three state-of-the-art models in the check-worthy claim detection task and fine-tuned them. Furthermore, we selected three state-of-the-art extremely large language models without any fine-tuning. We made modifications to the models to adapt them for multilingual settings and through extensive experimentation and evaluation. We assessed the performance of all the models in terms of accuracy, recall, and F1-score in in-domain and cross-domain scenarios. Our results demonstrate that despite the technological progress in the area of natural language processing, the models fine-tuned for the task of check-worthy claim detection still outperform the zero-shot approaches in a cross-domain settings.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司