亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We discuss techniques of estimation and inference for nonlinear cohort panels with learning from experience, showing, inter alia, the consistency and asymptotic normality of the nonlinear least squares estimator employed in the seminal paper by Malmendier and Nagel (2016, QJE). Potential pitfalls for hypothesis testing are identified and solutions proposed. Monte Carlo simulations verify the properties of the estimator and corresponding test statistics in finite samples, while an application to a panel of survey expectations demonstrates the usefulness of the theory developed.

相關內容

This research explores the reliability of deep learning, specifically Long Short-Term Memory (LSTM) networks, for estimating the Hurst parameter in fractional stochastic processes. The study focuses on three types of processes: fractional Brownian motion (fBm), fractional Ornstein-Uhlenbeck (fOU) process, and linear fractional stable motions (lfsm). The work involves a fast generation of extensive datasets for fBm and fOU to train the LSTM network on a large volume of data in a feasible time. The study analyses the accuracy of the LSTM network's Hurst parameter estimation regarding various performance measures like RMSE, MAE, MRE, and quantiles of the absolute and relative errors. It finds that LSTM outperforms the traditional statistical methods in the case of fBm and fOU processes; however, it has limited accuracy on lfsm processes. The research also delves into the implications of training length and valuation sequence length on the LSTM's performance. The methodology is applied by estimating the Hurst parameter in Li-ion battery degradation data and obtaining confidence bounds for the estimation. The study concludes that while deep learning methods show promise in parameter estimation of fractional processes, their effectiveness is contingent on the process type and the quality of training data.

The development of multi-modal medical foundation models has attracted significant attention in the field of medicine and healthcare due to their promising prospects in various clinical applications. One area of focus in this research direction is the extractions of features at different scales. While previous studies have explored feature learning at individual scales, investigation on integrating the diverse scales and modalities of information is lacking, which may hinder the potential for mutual reinforcement among these features. This paper aims to bridge this gap by proposing a method that effectively exploits multi-scale and cross-modality information to enhance the performance of medical foundation models. The proposed method simultaneously exploit features at the local, instance, modality and global aspects, facilitating comprehensive representation learning within the models. We evaluate the effectiveness of the proposed method on six open-source datasets across different clinical tasks, demonstrating its ability to enhance the performance of medical foundation models.

Multiscale dynamical systems, modeled by high-dimensional stiff ordinary differential equations (ODEs) with wide-ranging characteristic timescales, arise across diverse fields of science and engineering, but their numerical solvers often encounter severe efficiency bottlenecks. This paper introduces a novel DeePODE method, which consists of a global multiscale sampling method and a fitting by deep neural networks to handle multiscale systems. DeePODE's primary contribution is to address the multiscale challenge of efficiently uncovering representative training sets by combining the Monte Carlo method and the ODE system's intrinsic evolution without suffering from the ``curse of dimensionality''. The DeePODE method is validated in multiscale systems from diverse areas, including a predator-prey model, a power system oscillation, a battery electrolyte auto-ignition, and turbulent flames. Our methods exhibit strong generalization capabilities to unseen conditions, highlighting the power of deep learning in modeling intricate multiscale dynamical processes across science and engineering domains.

The causal inference literature frequently focuses on estimating the mean of the potential outcome, whereas the quantiles of the potential outcome may carry important additional information. We propose a universal approach, based on the inverse estimating equations, to generalize a wide class of causal inference solutions from estimating the mean of the potential outcome to its quantiles. We assume that an identifying moment function is available to identify the mean of the threshold-transformed potential outcome, based on which a convenient construction of the estimating equation of quantiles of potential outcome is proposed. In addition, we also give a general construction of the efficient influence functions of the mean and quantiles of potential outcomes, and identify their connection. We motivate estimators for the quantile estimands with the efficient influence function, and develop their asymptotic properties when either parametric models or data-adaptive machine learners are used to estimate the nuisance functions. A broad implication of our results is that one can rework the existing result for mean causal estimands to facilitate causal inference on quantiles, rather than starting from scratch. Our results are illustrated by several examples.

We study Whitney-type estimates for approximation of convex functions in the uniform norm on various convex multivariate domains while paying a particular attention to the dependence of the involved constants on the dimension and the geometry of the domain.

Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree $n$ converge at the root-exponential rate $O(\exp(-2\rho\sqrt{n}))$ with $\rho>0$ when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at $z=-\rho^2$. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.

We prove that a maintenance problem on frequency-constrained maintenance jobs with a hierarchical structure is integer-factorization hard. This result holds even on simple systems with just two components to maintain. As a corollary, we provide a first hardness result for Levi et al.'s modular maintenance scheduling problem (Naval Research Logistics 61, 472-488, 2014).

We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司