The spread of an undesirable contact process, such as an infectious disease (e.g. COVID-19), is contained through testing and isolation of infected nodes. The temporal and spatial evolution of the process (along with containment through isolation) render such detection as fundamentally different from active search detection strategies. In this work, through an active learning approach, we design testing and isolation strategies to contain the spread and minimize the cumulative infections under a given test budget. We prove that the objective can be optimized, with performance guarantees, by greedily selecting the nodes to test. We further design reward-based methodologies that effectively minimize an upper bound on the cumulative infections and are computationally more tractable in large networks. These policies, however, need knowledge about the nodes' infection probabilities which are dynamically changing and have to be learned by sequential testing. We develop a message-passing framework for this purpose and, building on that, show novel tradeoffs between exploitation of knowledge through reward-based heuristics and exploration of the unknown through a carefully designed probabilistic testing. The tradeoffs are fundamentally distinct from the classical counterparts under active search or multi-armed bandit problems (MABs). We provably show the necessity of exploration in a stylized network and show through simulations that exploration can outperform exploitation in various synthetic and real-data networks depending on the parameters of the network and the spread.
在本文中,我將簡單性、速度、可擴展性和可靠性作為多處理器算法的四個核心設計目標,并設計和分析滿足這些目標的算法。我設計了第一個可擴展的并發union-find算法。我們的算法提供了幾乎線性的加速,執行剛好
當p個進程在n個節點的實例上總共執行m個操作時。對該算法的正確性進行了嚴格的機器驗證證明,并證明了它的工作復雜度在一類對稱算法中是最優的,這類算法捕獲了所有已知的并發unionfind算法的復雜度。該算法在實踐中速度極快:它在模型檢測[23]和空間聚類方面改進了最先進的算法[208],并且是在CPU和GPU上計算連接組件最快的算法[51,95]。 我介紹了并發快速數組,它是可線性化的無等待數組,支持所有操作,包括初始化,只需常量時間。作為一個應用程序,我設計了第一個定長快速散列表,它支持常量時間的初始化、插入和查詢。 我定義了??????? ??????(廣義喚醒),它概括了稱為喚醒的信息傳播問題。證明了該問題的基本困難性結果,并通過約簡表明,任何可線性化的隊列、棧、優先隊列、計數器或union-find對象的工作復雜性都必須隨著進程數的增加而增加;這些下界對隨機化和攤銷都具有魯棒性。 我為實時和持久內存系統設計最優復雜度的鎖。我們的可中止隊列鎖是第一個在緩存一致(CC)和分布式共享內存(DSM)系統上實現O(1)均攤遠程內存引用(RMR)復雜度的可中止鎖。它還提供了“可中止的先到先得”公平性,并支持“快速中止”。我們的可恢復隊列鎖是第一個在CC和DSM持久內存系統上實現最優O(log p / log log p)最壞情況下的RMR復雜度的可恢復鎖。這兩種鎖都是基于我們新設計的標準鎖的創新,其設計簡化并統一了以前已知的多種技術。 本論文還強調并發算法的嚴格保證。我設計了一種新穎的通用、可靠且完備的“跟蹤”技術,用于證明并發算法的線性化和強線性化正確性。我與合作者利用這種技術為多核隊列、并查集和快照算法提供了經過機器驗證的正確性證明。最后,我證明并通過實驗證實,異步的“HOGWILD!”吉布斯采樣(一種源自機器學習實踐的技術)可用于準確估計滿足Dobrushin條件的圖模型的多項式和其他統計數據的期望值。
**本文研究了因果表示學習問題,即從高維的低維觀測中發現低維的高層次因果變量及其因果關系,以實現機器學習中的泛化和自適應。**考慮在監督學習中為泛化學習因果表示。由于虛假的相關性,預測模型往往無法泛化到與訓練時使用的分布不同的環境。本文提出一個框架,在基本因果圖的相當一般的假設下有理論保證,首先從觀察中確定給定目標的直接原因,然后用這些原因來構建不變的預測器,這些預測器能夠泛化到未見過的測試環境。
**其次,我們考慮在模仿和強化學習中學習因果表示的泛化。**其中一個基本的挑戰是學習策略、表示或動態,這些策略、表示或動態不會建立在虛假的相關性之上,并且不會泛化到它們所訓練的特定環境之外。我們從一個統一的觀點來研究這些泛化問題。為此,我們提出了一個框架來解決它們,在溫和的環境變化假設下,理論保證了可識別性和可泛化性。關鍵思想是,通過利用環境變量之間的結構關系(即,觀察、狀態、行動和獎勵),我們首先構建一個忽略虛假特征的數據表示,然后在策略、表示和動態方面構建不變預測因子。我們從理論上證明,所得到的策略、表示和動態可以很好地泛化到未見的環境。
**最后,我們考慮了強化學習中適應的學習因果表示。**除了泛化之外,強化學習的另一個基本挑戰是如何在只提供少量樣本的情況下快速使策略適應新環境。通過利用環境變量的結構關系,我們構建了一個簡約的圖表示,它分別編碼了用于策略適應的最小和充分的環境特定因素集和環境共享因素集的內容和位置。我們表明,這樣的表示允許我們以一種只需要少量樣本的有效方式使策略適應目標環境,而不需要進一步的策略優化。
黑盒優化(BBO)問題經常發生在許多工程和科學學科中,在這些學科中,人們可以訪問一個函數(黑盒)的零階評估,該函數必須在特定的領域進行優化。在許多情況下,函數的計算成本很高,因此計算的次數受到預算的限制。貝葉斯優化(Bayesian Optimization)是一種流行的算法,它通過代理對黑箱函數進行建模,并通過評估最有可能導致最優結果的點進行運算。多目標優化(MOO)是優化中的另一個主題,其目標是在一個公共領域中同時優化定義的多個目標。通常情況下,對于相同的輸入,這些目標不會達到它們的最佳狀態。在這種情況下,不是尋找單一的最佳解決方案,而是需要一組帕累托最優解決方案。本文研究了BBO和MOO的幾種優化策略及其應用。
**本文的前半部分是關于昂貴函數的BBO。**首先,基于隨機擴展的思想,提出了一種簡單而靈活的多目標黑盒優化方法。我們引入了多目標后悔的概念,并表明隨著預算的增長,我們的策略實現了零后悔。接下來,我們研究了神經網絡對昂貴BBO的有效性。我們證明了一個簡單的貪心方法可以達到接近高斯過程貝葉斯優化的性能。利用最近研究的高斯過程和非常廣泛的神經網絡訓練動態之間的聯系,我們證明了我們提出的算法的遺憾的上界。最后,我們提出了一個考慮成本的貝葉斯優化框架,該框架考慮了每次評估的成本。這種方法在評估成本隨輸入域而變化的環境中很有用,低成本評估可以提供關于最大值的大量信息。
本文的后半部分是關于MOO在兩個可微MOO問題上的應用。我們的第一個應用是學習稀疏嵌入,使用神經網絡進行快速檢索。這里要優化的目標是檢索精度和檢索速度。我們引入了一種新的稀疏正則化方法,并演示了一種退火策略,與其他方法相比,該策略產生了更好的目標帕累托邊界。對于我們的第二個應用,我們考慮了分層時間序列預測的問題,其中多個相關的時間序列被組織成一個層次。我們提出了一種考慮層次結構的方法,同時可擴展到大型層次,并表明它在大多數層次級別上都能提高精度。我們還將其視為一個多目標問題,并演示了跨不同層次的性能權衡。為了總結我們的貢獻,在這篇論文中,我們提出了各種類型的黑盒和多目標函數的優化策略,并在合成或基準數據集上進行實驗評估。
DCIST聯盟成員的一篇論文開發了一種多智能體強化學習(MARL)算法,該算法使用編碼理論來減輕分布式訓練中的滯留者效應。滯留者是指延遲的、無反應的或被破壞的計算節點,由于通信瓶頸和對抗性條件,在分布式學習系統中經常發生。編碼技術已經被用來加速存在散兵游勇的分布式計算任務,如矩陣乘法和逆問題。他們提出的編碼分布式學習框架可以與任何策略梯度方法一起應用,在存在散兵游勇的情況下為MARL問題訓練策略。他們開發了多智能體深度確定性策略梯度(MADDPG)的編碼分布式版本,這是一種最先進的MARL算法。為了全面了解編碼在分布式MARL中的好處,他們研究了各種編碼方案,包括最大距離可分離(MDS)編碼、隨機稀疏編碼、基于復制的編碼和常規低密度奇偶校驗(LDPC)編碼。所有這些方法都在幾個多機器人問題的模擬中實現,包括協作導航、捕食者-獵物、物理欺騙和遠離任務。他們的方法實現了相同的訓練精度,同時大大加快了策略梯度算法的訓練速度。
圖 1:MARL 的未編碼分布式學習示意圖。
強化學習(RL)為數據驅動決策提供了一個通用框架。然而,正是這種通用性使得這種方法適用于廣泛的問題,也導致了眾所周知的效率低下。在這篇論文中,我們考慮了有趣的決策類所共有的不同屬性,這些屬性可以用來設計計算效率和數據效率都很高的學習算法。具體來說,這項工作研究了決策問題的各個方面的低秩結構和經典確定性規劃的效果稀疏性,以及基于端到端模型的方法所依賴的性能。我們首先展示了后繼表示中的低秩結構如何使高效在線學習算法的設計成為可能。類似地,我們展示了如何在Bellman算子中找到相同的結構,我們使用Bellman算子來制定最小二乘時間差分學習算法的有效變體。我們進一步探索狀態特征中的低秩結構,以學習完全允許在低維空間中進行高效規劃的有效轉換模型。然后,我們進一步了解基于模型的端到端方法,以便更好地理解它們的屬性。我們通過約束優化和隱式微分的視角來研究這類方法。通過隱式視角,我們得到了這些方法的屬性,這些屬性使我們能夠確定它們執行良好的條件。在本文的最后,探索了如何利用經典規劃問題的效果的稀疏性來定義一般的領域無關啟發式方法,通過使用基于潛在的獎勵塑造和提升函數近似,可以用來大大加快領域相關啟發式方法的學習。
//dspace.mit.edu/handle/1721.1/144562
題目: Improving Deep Learning Training and Inference with Dynamic Hyperparameter Optimization
簡介:
在過去的十年中,深度學習證明了計算機視覺和自然語言處理所帶來的挑戰的最新準確性,從而使這些領域發生了革命性變化。深度學習模型現在是自動駕駛,醫學成像和神經機器翻譯等應用程序的基本構建塊。但是,在生產中部署這些模型時,仍然存在許多挑戰。研究人員和從業人員必須解決各種各樣的問題,包括如何有效地設計,培訓和部署資源密集型深度學習模型,以及如何在確保對變化條件的魯棒性的同時使這些方法自動化。本文提供并評估了提高深度學習訓練和推理效率以及底層系統對環境變化的魯棒性的新方法。我們通過關注為優化模型的準確性和資源使用而優化的許多超參數來解決這些問題。這些超參數包括模型架構的選擇,訓練數據集,優化算法,優化算法的超參數(例如學習率和動量)以及訓練時間預算。當前,在實踐中,幾乎所有超參數在訓練之前都進行了一次調整,此后保持不變,然而最佳的超參數值會隨時間變化(例如,隨著訓練的進行或替換用于推理的硬件時)。我們將動態調整應用于傳統上被認為是靜態的超參數。通過三個案例研究,我們表明,使用運行時信息來動態適應傳統上靜態的超參數可以提高機器學習訓練和推理的效率。 首先,我們提出并分析Selective-Backprop,這是一種新的重要采樣方法,它以在線方式對高損失示例進行優先排序。在Selective-Backprop中,被認為具有挑戰性的示例是可調超參數。通過優先處理這些具有挑戰性的示例,Selective-Backprop可以將給定的目標錯誤率訓練到比靜態方法快3.5倍的目標。接下來,我們探索AdaptSB,它是Selective-Backprop的變體,可以動態調整我們對具有挑戰性的示例進行優先級排序的方式。在“選擇性反向傳播”中,分配給難度不同示例的優先級保持不變。在AdaptSB中,我們將分配給不同類別示例的優先級視為可調超參數。通過對數據集和訓練階段動態地調整示例優先級,AdaptSB在出現標簽錯誤的數據集上表現優于Selective-Backprop。 最后,我們提出并分析了Mainstream,這是一種視頻分析系統,可讓并發應用共享共享邊緣資源,以最大程度地提高匯總結果質量。在Mainstream中,我們認為應用程序共享的程度是一個可調參數。 Mainstream在部署時使用更專業的DNN自動確定正確的權衡方案,以提高每幀的準確性并保留更多的非專業基礎模型。結果顯示,與靜態ap方法相比,Mainstream將平均事件檢測F1分數提高了多達87倍。
圖表示學習近年來得到了廣泛的研究。盡管它在為各種網絡生成連續嵌入方面具有潛力,但針對大量節點推斷高質量表示的有效性和效率仍然具有挑戰性。采樣是實現性能目標的關鍵。現有技術通常集中于正節點對的抽樣,而對負節點對的抽樣策略卻沒有進行充分的探索。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負抽樣的作用,從理論上論證了負抽樣與正抽樣在確定優化目標和由此產生的方差方面同樣重要。據我們所知,我們是第一個推導出負抽樣分布應該與正抽樣分布呈正相關但亞線性相關的理論并進行量化的工作。在該理論的指導下,我們提出了MCNS,用自對比近似逼近正分布,用Metropolis-Hastings加速負抽樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了廣泛的下游圖數據學習任務,包括鏈接預測、節點分類和個性化推薦,總共有19個實驗設置。這些較為全面的實驗結果證明了其魯棒性和優越性。
主題: Understanding Negative Sampling in Graph Representation Learning
摘要: 在最近的幾年中,研究人員對圖形表示學習進行了廣泛的研究。盡管它具有為各種網絡生成連續嵌入的潛力,但推斷向大型節點集表示高質量表示的有效性和效率仍然具有挑戰性。采樣是實現性能目標的關鍵點。現有技術通常集中于對正節點對進行采樣,而對負采樣的策略還沒有得到足夠的研究。為了彌合差距,我們從客觀和風險兩個角度系統地分析了負樣本的作用,從理論上證明了負樣本在確定優化目標和結果方差方面與正樣本同等重要。據我們所知,我們是第一個推導該理論并量化負采樣分布應與其正采樣分布呈正相關但與子線性相關的方法。在該理論的指導下,我們提出了MCNS,用Metropolis-Hastings用自對比度逼近來近似正分布,并加速Metropolis-Hastings進行負采樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了19個實驗設置,涵蓋了廣泛的下游圖形學習任務,包括鏈接預測,節點分類和個性化推薦。這些相對全面的實驗結果證明了其魯棒性和優越性。
我們假設好奇心是進化過程中發現的一種機制,它鼓勵個體在生命早期進行有意義的探索,從而使個體接觸到能夠在其一生中獲得高回報的經歷。我們將產生好奇行為的問題表述為元學習的問題之一:一個外環將在一個好奇心機制的空間中搜索,該機制動態地適應代理的獎勵信號,而一個內環將使用適應的獎勵信號執行標準的強化學習。然而,目前基于神經網絡權值傳遞的meta-RL方法只在非常相似的任務之間進行了推廣。為了擴展泛化,我們提出使用元學習算法:類似于ML論文中人類設計的代碼片段。我們豐富的程序語言將神經網絡與其他構建模塊(如緩沖區、最近鄰模塊和自定義丟失函數)結合在一起。我們通過實驗證明了該方法的有效性,發現了兩種新的好奇心算法,它們在圖像輸入網格導航、acrobot、lunar lander、ant和hopper等不同領域的性能與人類設計的公開發布的好奇心算法相當,甚至更好。