亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

強化學習(RL)為數據驅動決策提供了一個通用框架。然而,正是這種通用性使得這種方法適用于廣泛的問題,也導致了眾所周知的效率低下。在這篇論文中,我們考慮了有趣的決策類所共有的不同屬性,這些屬性可以用來設計計算效率和數據效率都很高的學習算法。具體來說,這項工作研究了決策問題的各個方面的低秩結構和經典確定性規劃的效果稀疏性,以及基于端到端模型的方法所依賴的性能。我們首先展示了后繼表示中的低秩結構如何使高效在線學習算法的設計成為可能。類似地,我們展示了如何在Bellman算子中找到相同的結構,我們使用Bellman算子來制定最小二乘時間差分學習算法的有效變體。我們進一步探索狀態特征中的低秩結構,以學習完全允許在低維空間中進行高效規劃的有效轉換模型。然后,我們進一步了解基于模型的端到端方法,以便更好地理解它們的屬性。我們通過約束優化和隱式微分的視角來研究這類方法。通過隱式視角,我們得到了這些方法的屬性,這些屬性使我們能夠確定它們執行良好的條件。在本文的最后,探索了如何利用經典規劃問題的效果的稀疏性來定義一般的領域無關啟發式方法,通過使用基于潛在的獎勵塑造和提升函數近似,可以用來大大加快領域相關啟發式方法的學習。

//dspace.mit.edu/handle/1721.1/144562

付費5元查看完整內容

相關內容

 (Massachusetts Institute of Technology,MIT)是美國一所研究型私立大學,位于馬薩諸塞州(麻省)的劍橋市。麻省理工學院的自然及工程科學在世界上享有極佳的盛譽,該校的工程系曾連續七屆獲得美國工科研究生課程冠軍,其中以電子工程專業名氣最響,緊跟其后的是機械工程。其管理學、經濟學、哲學、政治學、語言學也同樣優秀。

強化學習(Reinforcement learning, RL)是一種學習復雜決策策略的通用而強大的解決方案,為游戲和機器人等多個領域的近期成功提供了關鍵的基礎。然而,許多最先進的算法需要大量的數據,計算成本很高,需要大量的數據才能成功。雖然這在某些情況下是可能的,例如在可用數據稀少的社會科學和醫療健康應用程序中,這自然會昂貴或不可行的。隨著人們對將RL應用到更廣泛的領域的興趣的激增,對其算法設計中涉及的數據的使用形成一種明智的觀點是勢在必行的。

因此,本文主要從結構的角度研究RL的數據效率。沿著這個方向發展自然需要我們理解算法何時以及為什么會成功;并在此基礎上進一步提高數據挖掘的數據效率。為此,本文首先從實證成功案例中汲取啟示。我們考慮了基于模擬的蒙特卡洛樹搜索(MCTS)在RL中的流行,以AlphaGo Zero的卓越成就為例,并探討了納入這一關鍵成分的數據效率。具體來說,我們研究了使用這種樹結構來估計值和描述相應數據復雜性的正確形式。這些結果進一步使我們能夠分析將MCTS與監督學習相結合的RL算法的數據復雜性,就像在AlphaGo Zero中所做的那樣。

有了更好的理解之后,下一步,我們改進了基于模擬的數據高效RL算法的算法設計,這些算法可以訪問生成模型。我們為有界空間和無界空間都提供了這樣的改進。我們的第一個貢獻是通過一個新穎的低秩表示Q函數的結構框架。提出的數據高效的RL算法利用低秩結構,通過一種新的矩陣估計技術,只查詢/模擬狀態-動作對的一個子集來執行偽探索。值得注意的是,這導致了數據復雜度的顯著(指數級)提高。說到我們對無界空間的努力,我們必須首先解決無界域引起的獨特的概念挑戰。受經典排隊系統的啟發,我們提出了一個適當的穩定性概念來量化策略的“好”。隨后,通過利用底層系統的穩定性結構,我們設計了高效、自適應的算法,采用改進的、高效的蒙特卡洛oracle,以良好的數據復雜度(對感興趣的參數是多項式)保證了所需的穩定性。總之,通過新的分析工具和結構框架,本文有助于數據高效的RL算法的設計和分析。

//dspace.mit.edu/handle/1721.1/138930

付費5元查看完整內容

機器學習方法已經廣泛應用于藥物發現領域,使得更強大和高效的模型成為可能。在深度模型出現之前,建模分子在很大程度上是由專家知識驅動的;為了表現分子結構的復雜性,這些手工設計的規則被證明是不夠的。深度學習模型是強大的,因為它們可以學習問題的重要統計特征——但只有正確的歸納偏差。我們在兩個分子問題的背景下解決這個重要的問題:表征和生成。深度學習的典型成功在于它能夠將輸入域映射到有意義的表示空間。這對于分子問題尤其尖銳,分子之間的“正確”關系微妙而復雜。本論文的第一部分將重點討論分子表征,特別是性質和反應預測。在這里,我們探索了一種用于分子表示的Transformer式架構,提供了將這些模型應用于圖形結構對象的新工具。拋開傳統的圖神經網絡范式,我們展示了分子表示原型網絡的有效性,它允許我們對分子的學習性質原型進行推理。最后,我們在改進反應預測的背景下研究分子表示。本論文的第二部分將集中在分子生成,這是至關重要的藥物發現作為一種手段,提出有前途的藥物候選人。我們開發了一種新的多性質分子生成方法,通過首先學習分子片段的分布詞匯。然后,利用這個詞匯,我們調查了化學空間的有效探索方法。

//dspace.mit.edu/handle/1721.1/143362

機器學習已經迅速改變了藥物發現的傳統渠道,為過程的每一步提供了新的工具。許多傳統上需要廣泛、專業領域知識的問題已經通過深度學習工具解決,使它們更高效、更廉價。先前的化學信息學方法使用許多手工設計的規則來建模小分子。這些技術被用于解決諸如性質預測之類的問題,其中的任務是預測分子的性質。然而,試圖解決這些表示問題的傳統方法由于其不靈活的特性而缺乏良好的泛化能力。深度學習模型的變革性方面在于模型直接從數據中學習和提取重要特征的能力。然而,這只有在正確的結構偏差和模型基礎上的建模假設下才可能實現。在分子問題上天真地應用深度方法會限制模型的能力或有用性,阻礙它們的推廣能力和在實踐中的有用性。因此,利用正確的歸納偏差的重要性不能被低估。

在深度學習方法出現之前,分子建模需要繁重的工程和固定的表示,通常被稱為定量構效關系(QSAR)方法。在這些方法中,指紋技術是非常受歡迎的,大致可以分為基于結構的[30]、拓撲[1]、循環[8]和藥效團指紋等幾種類型[91]。其中一些指紋(如基于結構的MACCS[30]指紋)是高度特定的表示,由一組固定的預定義結構的指示函數組成。其他的指紋,拓撲的和圓形的,其中包括摩根指紋更靈活。這些指紋通過枚舉路徑或環形鄰域來捕獲局部拓撲。然而,問題仍然存在于生成方法的確定性本質中:如果這些預定義規則沒有為任務捕獲正確的表示,它們將不能很好地工作。例如,對于許多小分子問題來說,性質懸崖(property cliff)仍然是一個具有挑戰性的問題,這是一種類似分子表現出不同性質的現象。這個問題對于分子指紋尤其尖銳,因為特征是固定的。然而,使用深度模型也不能解決這個問題,因為深度模型很容易與數據過度擬合,并且提供較差的泛化。

因此,我們的深度學習模型納入正確類型的結構偏差是至關重要的。圖神經網絡通過迭代聚合方案進行操作,在每一步,節點從其鄰居聚合信息。依次,一個節點應該包含越來越多的關于更大的鄰域的信息。節點表示最終聚合為表示圖的單個向量。雖然這種簡單的范式有時是有效的,但可能并不總是包含正確的分子任務類型的偏見。例如,當考慮分子的特性時,這種局部鄰域聚集可能無法捕捉到很重要的遠程依賴關系。更重要的是,也許在二維分子圖上的聚集并不適合理想的分子表示,我們應該觀察三維結構。對于分子的深度模型的發展有許多考慮,但它們需要正確的結構才能有效。指紋表示很簡單,但不靈活,經常涉及很多人類設計的規則。另一方面,深度模型很容易過擬合,無法捕捉正確的結構表示。

付費5元查看完整內容

構建能夠有效解決各種問題的通用RL算法需要將正確的結構和表示編碼到我們的模型中。我們泛化能力的一個關鍵組成部分是我們開發世界內部模型的能力,該模型可以用于穩健的預測和有效的規劃。在本論文中,我們討論了如何利用表示學習來學習更好的物理場景預測模型,并使agent能夠在基于模型的RL框架下通過規劃學習到的模型來推廣到新的任務。我們將介紹兩種能夠實現良好泛化的抽象:對象級表示形式的狀態抽象和分層RL的技能表示形式的時間抽象。通過將這些抽象概念整合到我們的模型中,我們可以在長期、多階段的問題上實現高效的學習和組合推廣。我們還討論了元學習在自動學習一般RL算法的正確結構中的作用。利用大規模的基于進化的計算,我們可以學習通用的RL算法,這些算法在各種任務中具有更好的樣本效率和最終性能。最后,我們將介紹如何使用這些內部模型來計算RL目標本身,并在不設計獎勵函數的情況下訓練具有復雜行為的一般RL代理。

付費5元查看完整內容

近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。

具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。

我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。

//www.research-collection.ethz.ch/handle/20.500.11850/523269

付費5元查看完整內容

強化學習(RL)智能體需要探索他們的環境,以便通過試錯學習最優策略。然而,當獎勵信號稀疏,或當安全是一個關鍵問題和某些錯誤是不可接受的時候,探索是具有挑戰性的。在本論文中,我們通過修改智能體解決的潛在優化問題,激勵它們以更安全或更有效的方式探索,來解決深度強化學習設置中的這些挑戰。

在這篇論文的第一部分,我們提出了內在動機的方法,在獎勵稀少或缺乏的問題上取得進展。我們的第一種方法使用內在獎勵來激勵智能體訪問在學習動力學模型下被認為是令人驚訝的狀態,并且我們證明了這種技術比單純探索更好。我們的第二種方法使用基于變分推理的目標,賦予個體不同的多種技能,而不使用特定任務的獎勵。我們證明了這種方法,我們稱為變分選擇發現,可以用來學習運動行為的模擬機器人環境。

在論文的第二部分,我們重點研究了安全勘探中存在的問題。在廣泛的安全強化學習研究的基礎上,我們提出將約束的RL標準化為安全探索的主要形式; 然后,我們繼續開發約束RL的算法和基準。我們的材料展示按時間順序講述了一個故事:我們首先介紹約束策略優化(Constrained Policy Optimization, CPO),這是約束深度RL的第一個算法,在每次迭代時都保證接近約束的滿足。接下來,我們開發了安全健身基準,它讓我們找到CPO的極限,并激勵我們向不同的方向前進。最后,我們發展了PID拉格朗日方法,其中我們發現對拉格朗日原-對偶梯度基線方法進行小的修改,可以顯著改善求解Safety Gym中約束RL任務的穩定性和魯棒性。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-34.html

付費5元查看完整內容

Model-Based Methods in Reinforcement Learning 本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來做決策——而不是將環境看作一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及計劃和學習之間的關系。我們還強調了在典型的RL設置之外利用世界模型的方式,以及在設計未來的MBRL系統時,從人類認知中可以得到什么啟示。

付費5元查看完整內容
北京阿比特科技有限公司