亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

強化學習(Reinforcement learning, RL)是一種學習復雜決策策略的通用而強大的解決方案,為游戲和機器人等多個領域的近期成功提供了關鍵的基礎。然而,許多最先進的算法需要大量的數據,計算成本很高,需要大量的數據才能成功。雖然這在某些情況下是可能的,例如在可用數據稀少的社會科學和醫療健康應用程序中,這自然會昂貴或不可行的。隨著人們對將RL應用到更廣泛的領域的興趣的激增,對其算法設計中涉及的數據的使用形成一種明智的觀點是勢在必行的。

因此,本文主要從結構的角度研究RL的數據效率。沿著這個方向發展自然需要我們理解算法何時以及為什么會成功;并在此基礎上進一步提高數據挖掘的數據效率。為此,本文首先從實證成功案例中汲取啟示。我們考慮了基于模擬的蒙特卡洛樹搜索(MCTS)在RL中的流行,以AlphaGo Zero的卓越成就為例,并探討了納入這一關鍵成分的數據效率。具體來說,我們研究了使用這種樹結構來估計值和描述相應數據復雜性的正確形式。這些結果進一步使我們能夠分析將MCTS與監督學習相結合的RL算法的數據復雜性,就像在AlphaGo Zero中所做的那樣。

有了更好的理解之后,下一步,我們改進了基于模擬的數據高效RL算法的算法設計,這些算法可以訪問生成模型。我們為有界空間和無界空間都提供了這樣的改進。我們的第一個貢獻是通過一個新穎的低秩表示Q函數的結構框架。提出的數據高效的RL算法利用低秩結構,通過一種新的矩陣估計技術,只查詢/模擬狀態-動作對的一個子集來執行偽探索。值得注意的是,這導致了數據復雜度的顯著(指數級)提高。說到我們對無界空間的努力,我們必須首先解決無界域引起的獨特的概念挑戰。受經典排隊系統的啟發,我們提出了一個適當的穩定性概念來量化策略的“好”。隨后,通過利用底層系統的穩定性結構,我們設計了高效、自適應的算法,采用改進的、高效的蒙特卡洛oracle,以良好的數據復雜度(對感興趣的參數是多項式)保證了所需的穩定性。總之,通過新的分析工具和結構框架,本文有助于數據高效的RL算法的設計和分析。

//dspace.mit.edu/handle/1721.1/138930

付費5元查看完整內容

相關內容

強化學習(RL)是機器學習的一個領域,與軟件代理應如何在環境中采取行動以最大化累積獎勵的概念有關。除了監督學習和非監督學習外,強化學習是三種基本的機器學習范式之一。 強化學習與監督學習的不同之處在于,不需要呈現帶標簽的輸入/輸出對,也不需要顯式糾正次優動作。相反,重點是在探索(未知領域)和利用(當前知識)之間找到平衡。 該環境通常以馬爾可夫決策過程(MDP)的形式陳述,因為針對這種情況的許多強化學習算法都使用動態編程技術。經典動態規劃方法和強化學習算法之間的主要區別在于,后者不假設MDP的確切數學模型,并且針對無法采用精確方法的大型MDP。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

由于物理世界是復雜的、模糊的、不可預測的,自主的智能體必須被設計成表現出人類水平的靈活性和通用性——遠遠超出我們顯式編程的能力。這種自主的實現不僅能夠可靠地解決特定的問題,而且還能夠預測可能出現的錯誤,以便制定戰略、適應和持續學習。要想做出如此豐富而復雜的決策,就需要在自主學習生命周期的所有階段重新思考智能的基礎

在本論文中,我們開發了新的基于學習的方法,以實現自主系統的動態、彈性和穩健決策。通過解決在所有階段出現的關鍵挑戰,從用于訓練的數據,到在這些數據上學習的模型,再到算法,以可靠地適應部署期間的意外事件,來推進野外的魯棒決策。我們首先探索如何通過計算設計豐富的合成環境,能夠模擬連續的難以收集的、分布外的邊緣情況,在訓練和評估期間易于使用。利用這個豐富的數據基礎,我們隨后創建了高效、富有表現力的學習模型,以及優化其表示的必要算法,并克服了代表性不足和具有挑戰性的數據中的不平衡。最后,使用經過訓練的模型,我們將轉向部署設置,在該設置中,我們仍然應該預期我們的系統將面臨在訓練中從未遇到過的全新場景。為此,我們開發了自適應和不確定性感知算法來估計模型的不確定性,并利用它的存在來實現一般化的決策,即使是在存在意外事件的情況下。

付費5元查看完整內容

機器學習是一種從數據中提取預測模型,從而能夠將預測泛化到未觀察數據的技術。根據已知數據集選擇良好模型的過程需要進行優化。具體地說,優化過程在約束集中生成一個變量來最小化目標。這個過程包含了包括神經網絡訓練在內的許多機器學習管道,這將是我們在本文中進行理論分析的主要試驗場。在各種優化算法中,梯度方法因其高維可擴展性和反向傳播的自然局限性而成為深度學習中的主導算法。然而,盡管基于梯度的算法很受歡迎,但我們從理論的角度對機器學習環境中的這種算法的理解似乎還遠遠不夠。一方面,在現有的理論框架內,大多數上下界是封閉的,理論問題似乎得到了解決。另一方面,理論分析很難產生比實踐者發現的經驗更快的算法。本文回顧了梯度法的理論分析,指出了理論與實踐的差異。然后,我們解釋了為什么會發生不匹配,并通過發展由經驗觀察驅動的理論分析,提出了一些初始解決方案。

//dspace.mit.edu/handle/1721.1/143318

付費5元查看完整內容

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

在過去的幾年中,深度學習和醫學的交叉領域取得了快速的發展,特別是在醫學圖像的解譯方面。在本文中,我描述了三個關鍵方向,為醫學圖像解釋的深度學習技術的發展提出了挑戰和機遇。首先,我討論了專家級醫學圖像解譯算法的發展,重點是用于低標記醫學數據設置的遷移學習和自監督學習算法。其次,我討論了高質量數據集的設計和管理以及它們在推進算法發展中的作用,重點是使用有限的手動注釋的高質量標記。第三,我討論了真實世界的評估醫學圖像算法的研究,系統地分析了在臨床相關分布變化下的性能。總之,這篇論文總結了關鍵貢獻和見解,在這些方向與關鍵應用跨醫學專業。

//searchworks.stanford.edu/view/13876519

付費5元查看完整內容

強化學習(RL)智能體需要探索他們的環境,以便通過試錯學習最優策略。然而,當獎勵信號稀疏,或當安全是一個關鍵問題和某些錯誤是不可接受的時候,探索是具有挑戰性的。在本論文中,我們通過修改智能體解決的潛在優化問題,激勵它們以更安全或更有效的方式探索,來解決深度強化學習設置中的這些挑戰。

在這篇論文的第一部分,我們提出了內在動機的方法,在獎勵稀少或缺乏的問題上取得進展。我們的第一種方法使用內在獎勵來激勵智能體訪問在學習動力學模型下被認為是令人驚訝的狀態,并且我們證明了這種技術比單純探索更好。我們的第二種方法使用基于變分推理的目標,賦予個體不同的多種技能,而不使用特定任務的獎勵。我們證明了這種方法,我們稱為變分選擇發現,可以用來學習運動行為的模擬機器人環境。

在論文的第二部分,我們重點研究了安全勘探中存在的問題。在廣泛的安全強化學習研究的基礎上,我們提出將約束的RL標準化為安全探索的主要形式; 然后,我們繼續開發約束RL的算法和基準。我們的材料展示按時間順序講述了一個故事:我們首先介紹約束策略優化(Constrained Policy Optimization, CPO),這是約束深度RL的第一個算法,在每次迭代時都保證接近約束的滿足。接下來,我們開發了安全健身基準,它讓我們找到CPO的極限,并激勵我們向不同的方向前進。最后,我們發展了PID拉格朗日方法,其中我們發現對拉格朗日原-對偶梯度基線方法進行小的修改,可以顯著改善求解Safety Gym中約束RL任務的穩定性和魯棒性。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-34.html

付費5元查看完整內容

與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。

由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。

在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。

//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/

付費5元查看完整內容

機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。

本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習

第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。

第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。

//www.ri.cmu.edu/publications/robot-deep-reinforcement-learning-tensor-state-action-spaces-and-auxiliary-task-learning-with-multiple-state-representations/

付費5元查看完整內容

決策理論是現代人工智能和經濟學的基礎。本課程主要從統計學的角度,也從哲學的角度,為決策理論打下堅實的基礎。本課程有兩個目的:

  • 深入了解統計決策理論、實驗設計的自動化方法,并將其與人類決策聯系起來。
  • 通過開發算法和智能代理的實驗,將該理論應用到強化學習和人工智能的實際問題中。

課程可分為兩部分。

  • 第一部分,我們介紹了主觀概率和效用的概念,以及如何用它們來表示和解決決策問題。然后討論未知參數的估計和假設檢驗。最后,我們討論了順序抽樣、順序實驗,以及更一般的順序決策。

  • 第二部分是不確定性下的決策研究,特別是強化學習和專家咨詢學習。首先,我們研究幾個有代表性的統計模型。然后,我們給出了使用這些模型做出最優決策的算法的概述。最后,我們來看看學習如何根據專家的建議來行動的問題,這個領域最近在在線廣告、游戲樹搜索和優化方面有很多應用。

付費5元查看完整內容
北京阿比特科技有限公司