亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

本文研究了深度學習理論中一個基本的開放挑戰: 為什么深度網絡在過度參數化、非正則化和擬合訓練數據為零誤差的情況下仍能很好地泛化? 在論文的第一部分,我們將實證研究如何通過隨機梯度下降訓練深度網絡隱式控制網絡容量。隨后,為了說明這如何導致更好的泛化,我們將推導基于數據的一致收斂的泛化邊界,并改進參數計數的依賴性。由于其簡單性和通用性,一致收斂實際上已經成為深度學習文獻中使用最廣泛的工具。鑒于它的流行,在這篇論文中,我們也將后退一步,確定一致收斂的基本極限,作為解釋泛化的工具。特別地,我們將證明在一些過度參數化的設置的例子中,任何一致收斂界將只提供一個空洞的泛化界。考慮到這一點,在論文的最后一部分,我們將改變航向,并引入一種經驗技術來估計使用未標記數據的泛化。我們的技術不依賴于任何基于一致收斂的復雜性概念,而且非常精確。我們將從理論上說明為什么我們的技術如此精確。最后,我們將討論未來的工作如何探索在泛化邊界中納入分布假設的新方法(例如以未標記數據的形式),并探索其他工具來推導邊界,可能是通過修改統一收斂或開發完全新的工具。

付費5元查看完整內容

盡管現代深度強化學習(RL)算法處于人工智能能力的前沿,但通常需要大量的訓練樣本才能達到與人類相當的性能水平。這種嚴重的數據效率低下是深度RL實際應用的主要障礙: 在沒有模擬器的情況下,幾乎不可能將深度RL應用到任何領域。為了解決這一關鍵的數據低效問題,在本文中,我們致力于設計能夠快速適應新環境的元學習智能體。與標準的強化學習相比,元學習在環境分布上進行學習,從環境中抽樣特定任務,并直接優化元學習者,以提高策略改進的速度。通過利用與感興趣任務共享子結構的任務分布,元學習者可以調整自己的歸納偏差,從而在測試時快速適應。本文主要研究元學習算法的設計,該算法利用記憶作為驅動在新環境中快速適應的主要機制。情景間記憶的元學習是一種利用基于特定環境的整個互動歷史的記憶架構來產生策略的元學習方法。因此,在特定任務中的學習動態驅動策略改進被包含在序列模型的計算過程中,本質上把學習算法的設計交給了體系結構。雖然概念上簡單明了,但使用情景間記憶的元學習非常有效,仍然是一種最先進的方法。我們提出并討論了一些通過記憶進行元學習的技巧。論文的第一部分集中在“具身”環境類,其中智能體人在一個類似于自然世界的環境中有一個物理表現。我們利用這種高度結構化的環境集,致力于設計具有快速記憶、規劃和狀態推斷能力的單片嵌入式代理體系結構。在論文的第二部分,我們將重點放在那些沒有強公共子結構的一般環境中應用的方法。首先,我們重新研究了元學習主體與環境的交互模式:提出用并發執行框架取代傳統的順序處理交互歷史,其中多個主體在環境中并行操作。接下來,我們將討論一種通用且功能強大的跨情景記憶序列模型——門控transformer的使用,它在性能和數據效率方面有了很大的改進。最后,我們開發一種方法,顯著降低訓練成本和代理延遲transformer 模型(元)強化學習設置,目的是對(1)在研究社區,使其使用更加廣泛,(2)解鎖使用實時和latency-constrained應用,如機器人。

//www.ml.cmu.edu/research/phd-dissertation-pdfs/eparisot_phd_mld_2021.pdf

付費5元查看完整內容

深度學習的進步使自然語言生成(NLG)變得更加流暢和靈活。雖然這些神經生成系統在機器翻譯方面取得了早期的成功,但當它們被應用到抽象總結、故事生成和閑談對話等更開放的任務時,它們會遇到重復、不連貫和不可控等問題。此外,開放式神經生成模型往往由人工在精心控制的環境中進行評估;它們在現實環境中如何與現實用戶互動,這一點還不太清楚。

本文分析和改進了執行開放性任務的神經生成系統; 在對話的情況下,系統是在其整個社會背景下評估的。首先,對于抽象摘要,我提出了一個指針生成器模型來提高復制的準確性,以及一個覆蓋機制來減少生成摘要的重復。接下來,對于聊天對話,我提出了一個大規模的詳細的人的評價,揭示了機器人行為(如重復、特異性、話題停留和提問)和人的質量判斷之間的關系,并表明通過控制這些機器人行為,我們可以改善用戶體驗。第三,關于故事生成,我描述了大規模預訓練和解碼算法對生成文本的句法、語義、結構和文體方面的影響。最后,作為Alexa獎項的一部分,我展示了一個神經生成聊天模型的部署研究,與真實的、內在動機的用戶交談。通過分析機器人與用戶的交互,我確定了機器人的主要錯誤類型,以及它們與用戶不滿的關系。

此外,我展示了一種半監督的方法,從不佳中學習,從而改善對話系統。

//purl.stanford.edu/hw190jq4736

付費5元查看完整內容

今天的計算機視覺擅長于識別現實世界的限定部分:我們的模型似乎能在基準數據集中準確地檢測出像貓、汽車或椅子這樣的物體。然而,部署模型要求它們在開放世界中工作,開放世界包括各種設置中的任意對象。目前的方法在兩個方面都有困難:他們只認識到少數的類別,并且在不同的訓練分布的環境中切換。解決這些挑戰的模型可以作為下游應用的基本構建模塊,包括識別操作、操作對象和繞過障礙進行導航。本論文提出了我們在建立魯棒檢測和跟蹤目標模型的工作,特別是有很少或甚至沒有訓練的樣例。首先,我們將探索傳統模型如何泛化到現實世界,傳統模型只識別一小部分對象類。我們表明,目前的方法是極其敏感的:即使是輸入圖像或測試分布的細微變化,都可能導致精度下降。我們的系統評估顯示,模型——即使是那些訓練很好的對對抗或合成損壞具有魯棒性的模型——經常正確地分類視頻的一幀,但在相鄰的感知相似的幀上卻失敗了。類似的現象甚至適用于由數據集之間的自然變化引起的微小分布變化。最后,我們提出了一種解決對象外觀泛化的極端形式的方法:檢測完全遮擋的對象。接下來,我們探索歸納到大的或無限的詞匯,其中包含罕見的和從未見過的類。由于當前的數據集很大程度上局限于一個小的、封閉的對象集合,我們首先提出了一個大型詞匯基準來衡量檢測和跟蹤的進展。我們展示了當前的評估不足以滿足大型詞匯量基準測試,并提供了適當評估此設置中的進度的替代指標。最后,我們提出了利用封閉世界識別的進展來為任何對象建立精確、通用的檢測器和跟蹤器的方法。

//www.ri.cmu.edu/publications/open-world-object-detection-and-tracking/

付費5元查看完整內容

向量嵌入模型是現代機器學習知識表示和推理方法的基石。這些方法旨在通過在低維向量空間中學習概念和其他領域對象的表示,將語義問題轉化為幾何問題。本著這種精神,這項工作提倡基于密度和區域的表示學習。將領域元素作為幾何對象嵌入到單點之外,使我們能夠自然地表示廣度和一詞多義,進行不對稱比較,回答復雜的查詢,并在標記數據稀缺時提供強烈的歸納偏見。我們提出了一個使用高斯密度的詞表示模型,實現了概念之間的不對稱隱含判斷,以及一個基于軸對齊超矩形表示(盒)格的加權傳遞關系和多元離散數據的概率模型。我們將探討這些嵌入方法在不同的稀疏性、邊緣權值、相關性和獨立結構的適用性,以及表示的擴展和不同的優化策略。我們從理論上研究了盒格的表示能力,并提出了擴展模型來解決在建模困難的分布和圖方面的不足。

付費5元查看完整內容

我們為什么在這里?我們大多數人來到這里的原因很簡單:我們想解決人工智能問題。那么,人工智能和這本書的書名有什么關系呢?人工智能的現代定義之一是對理性代理的研究和設計[RN09]。從這個意義上說,我們將一個系統描述為智能的,當它最大化某些預期的性能概念時。機器學習的子領域處理的是問題和算法的子集,其中代理可以獲得經驗(通常以某種形式的數據),可以利用這些經驗來改進性能的概念[MRT12]。大多數情況下,性能是由代理人在新的和看不見的情況下如何行動來衡量的,這些情況不構成其訓練經驗的一部分。例如,可以訓練一名代理人將英文翻譯成法文,其訓練經驗包括大量翻譯的聯合國文件。然而,在評估時,它可能會在與它所見過的文件不同的聯合國新文件上進行測試。很自然地,代理在它所看到的訓練經驗和它所評估的新情況下的表現之間存在著差距。代理泛化的能力是通過性能上的差距有多小來衡量的。

希望前面的段落已經解釋了在機器學習的背景下,以及在更大的AI背景下,什么是泛化。那么,標題中還保留著哪些“分布外”詞呢?如前所述,泛化是指減少一個agent在已知訓練情境下的表現與同一agent在未知測試情境下的表現之間的差距。然而,有許多不同類型的未知。統計學習通常處理的一類泛化是分布的:當從訓練示例生成的數據與測試示例生成的數據無法區分時。根據定義,非分布內的泛化問題稱為分布外泛化問題,這是本書的主題。

這項工作的目標很簡單。我們想要回顧,分布外泛化的知識。因此,這項工作的很大一部分將致力于理解(有時是微妙的)不同方法和假設之間的差異和相似性,通常以一種孤立的方式呈現。重點將放在與人工智能或現代大規模機器學習應用等想法上。此外,我們將特別注意研究不同方法的缺點,以及下一步可能是重要的。

  • 在第二章中,我們首先討論如何量化分布外泛化。通過幾個例子,我們研究了分布外泛化與處理不同分布外任務的幾種常用方法之間的關系。本文將特別強調這些方法背后的假設,并說明這些方法何時有效,何時無效。

  • 在第三章中,我們將關注一個特定的分布外任務類。在這些預測任務中,就像在許多實際問題中一樣,在分布之外泛化的困難在于找出數據中的哪些相關性是假的和不可靠的,以及哪些相關性代表感興趣的現象。

  • 在第四章中,我們討論了不同應用領域在實踐中出現的分布外任務的類型,以及這些領域在過去是如何處理這些問題的。

  • 在第五章中,我們為分布外泛化和人工智能背景下的新研究領域奠定了基礎。在本章中,我們將關注在探索或強化學習環境中與世界交互的agent,以及它們如何從分布外泛化中獲益。

付費5元查看完整內容

賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。

在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。

總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。

//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28

付費5元查看完整內容

與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。

由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。

在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。

//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在連續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。****

付費5元查看完整內容

本篇推薦來自CMU-LTI的小姐姐Zhuyun Dai博士論文《Neural Matching and Importance Learning in Information Retrieval》,是信息檢索領域值得關注的最新工作。

作者介紹:

Zhuyun Dai

卡內基梅隆大學語言技術學院(LTI)的博士生。研究方向是提升當今信息檢索系統的語言理解能力,構建下一代信息助理系統,幫助人們無縫地獲取世界上的知識。

//www.cs.cmu.edu/~zhuyund/index.html

信息檢索中的神經匹配與重要性學習

地址:

在50-60年的時間里,信息檢索(IR)系統依賴于詞匯袋方法。盡管詞包檢索有一些長期存在的限制,但解決這些問題的嘗試大多是不成功的。最近,神經網絡為自然語言建模提供了一種新的范式。這篇論文的目的是結合IR的觀點和神經網絡的關鍵優勢,以帶來更深入的語言理解IR。

本論文的第一部分主要研究如何匹配查詢和文檔。 最先進的排序器以前依賴于精確的詞匯匹配,這導致了眾所周知的詞匯不匹配問題。本文開發了將軟匹配引入相關性排序的神經模型。利用分布式文本表示,我們的模型可以對每個查詢詞和每個文檔詞進行軟匹配。由于軟匹配信號有噪聲,本文提出了一種新的核池技術,該技術根據軟匹配對相關性的貢獻對軟匹配進行分組。本文還研究了預訓練好的模型參數是否可以改善低資源域,以及模型架構在非文本檢索任務中是否可重用。我們的方法比以前最先進的排名系統有很大的優勢。

本論文的第二部分主要研究如何表示查詢和文檔。一個典型的搜索引擎使用頻率統計來確定單詞的權重,但是頻繁的單詞對文本的意義不一定是必要的。本論文開發的神經網絡,以估計詞的重要性,基于如何相互作用的語言語境。開發了一種弱監督方法,允許在沒有任何人工注釋的情況下訓練我們的模型。我們的模型可以離線運行,在不影響效率的前提下顯著提高了第一階段的檢索。

總之,本文提出了一種新的神經檢索范式,克服了傳統檢索模型在匹配和重要性加權方面的局限性。在神經相關性排序、深度檢索模型和深度文檔理解等方面提出了一些有前景的方法。

付費5元查看完整內容
北京阿比特科技有限公司