亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本篇推薦來自CMU-LTI的小姐姐Zhuyun Dai博士論文《Neural Matching and Importance Learning in Information Retrieval》,是信息檢索領域值得關注的最新工作。

作者介紹:

Zhuyun Dai

卡內基梅隆大學語言技術學院(LTI)的博士生。研究方向是提升當今信息檢索系統的語言理解能力,構建下一代信息助理系統,幫助人們無縫地獲取世界上的知識。

//www.cs.cmu.edu/~zhuyund/index.html

信息檢索中的神經匹配與重要性學習

地址:

在50-60年的時間里,信息檢索(IR)系統依賴于詞匯袋方法。盡管詞包檢索有一些長期存在的限制,但解決這些問題的嘗試大多是不成功的。最近,神經網絡為自然語言建模提供了一種新的范式。這篇論文的目的是結合IR的觀點和神經網絡的關鍵優勢,以帶來更深入的語言理解IR。

本論文的第一部分主要研究如何匹配查詢和文檔。 最先進的排序器以前依賴于精確的詞匯匹配,這導致了眾所周知的詞匯不匹配問題。本文開發了將軟匹配引入相關性排序的神經模型。利用分布式文本表示,我們的模型可以對每個查詢詞和每個文檔詞進行軟匹配。由于軟匹配信號有噪聲,本文提出了一種新的核池技術,該技術根據軟匹配對相關性的貢獻對軟匹配進行分組。本文還研究了預訓練好的模型參數是否可以改善低資源域,以及模型架構在非文本檢索任務中是否可重用。我們的方法比以前最先進的排名系統有很大的優勢。

本論文的第二部分主要研究如何表示查詢和文檔。一個典型的搜索引擎使用頻率統計來確定單詞的權重,但是頻繁的單詞對文本的意義不一定是必要的。本論文開發的神經網絡,以估計詞的重要性,基于如何相互作用的語言語境。開發了一種弱監督方法,允許在沒有任何人工注釋的情況下訓練我們的模型。我們的模型可以離線運行,在不影響效率的前提下顯著提高了第一階段的檢索。

總之,本文提出了一種新的神經檢索范式,克服了傳統檢索模型在匹配和重要性加權方面的局限性。在神經相關性排序、深度檢索模型和深度文檔理解等方面提出了一些有前景的方法。

付費5元查看完整內容

相關內容

 (Carnegie Mellon University)坐落在賓夕法尼亞州的匹茲堡,是一所享譽世界的私立頂級研究型大學,學校面積不大,學科門類不多,但在其所設立的幾乎所有專業都居于世界領先水平。卡內基梅隆大學享譽全國的認知心理學、管理和公共關系學、寫作和修辭學、應用歷史學、哲學和生物科學專業。它的計算機、機器人科學、理學、美術及工業管理都是舉世公認的一流專業。

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

在過去的20年里,基因組學、神經科學、經濟學和互聯網服務等許多領域產生了越來越多的大數據集,這些數據集有高維、大樣本,或者兩者兼之。這為我們從數據中檢索和推斷有價值的信息提供了前所未有的機會。同時,也對統計方法和計算算法提出了新的挑戰。一方面,我們希望建立一個合理的模型來捕獲所需的結構,并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能成為一個巨大的障礙,以得出有意義的結論。這篇論文站在兩個主題的交叉點,提出了統計方法來捕獲所需的數據結構,并尋求可擴展的方法來優化計算非常大的數據集。我們提出了一種可擴展的靈活框架,用于利用lasso/elastic-net解決大規模稀疏回歸問題; 提出了一種可伸縮的框架,用于在存在多個相關響應和其他細微差別(如缺失值)的情況下解決稀疏縮減秩回歸問題。分別在snpnet和multiSnpnet R包中以PLINK 2.0格式為基因組數據開發了優化的實現。這兩種方法在超大和超高維的英國生物樣本庫研究中得到了驗證,與傳統的預測建模方法相比有了顯著的改進。此外,我們考慮了一類不同的高維問題,異質因果效應的估計。與監督學習的設置不同,這類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得處理之間真正差異的基本真相。我們提出適應非參數統計學習方法,特別是梯度增強和多元自適應回歸樣條,以估計處理效果的預測器可用。實現被打包在一個R包causalLearning中。

付費5元查看完整內容

自然語言理解(NLU)的最新進展正在推動信息檢索(IR)的快速發展,這在很大程度上要歸功于對文檔排序的深層語言模型(LMs)的微調。雖然非常有效,但是基于這些LMs的排序模型比以前的方法增加了幾個數量級的計算成本,特別是因為它們必須通過一個龐大的神經網絡來為每個查詢文檔對提供數據,從而計算單個相關分數。為了解決這個問題,我們提出了一種新的排序模型ColBERT,它采用深度LMs(特別是BERT)來進行有效的檢索。ColBERT引入了一種后期交互體系結構,該體系結構使用BERT獨立地對查詢和文檔進行編碼,然后使用一種廉價但功能強大的交互步驟來建模它們的細粒度相似性。通過延遲并保留這種細粒度交互,ColBERT可以利用深度LMs的表達能力,同時獲得離線預先計算文檔表示的能力,這大大加快了查詢處理的速度。除了降低通過傳統模型檢索的文檔重新排序的成本外,ColBERT的修剪友好交互機制還支持利用向量相似度索引來直接從大型文檔集合進行端到端檢索。我們使用兩個最近的文章搜索數據集對ColBERT進行了廣泛的評估。結果表明,ColBERT的有效性與現有的基于bert的模型相比是有競爭力的(并且優于每個非bert基線),同時執行兩個數量級的速度更快,每個查詢需要減少四個數量級的錯誤。

付費5元查看完整內容

地址:

//arxiv.org/abs/2002.12312

在這篇論文中,我們討論了協同過濾和排名的一些最新進展。第一章簡要介紹了協同過濾與排名的歷史與現狀;第二章首先討論了圖信息的點態協同過濾問題,以及我們提出的新方法如何對深度圖信息進行編碼,這有助于現有的四種圖信息協同過濾算法;第三章介紹了協同排序的配對方法,以及如何將算法加速到接近線性的時間復雜度;第4章是關于新的列表方法的協作排名,以及如何更好的選擇列表方法的損失顯式和隱式反饋超過點和兩兩損失;第5章是關于我們提出的新的正則化技術——隨機共享嵌入(SSE),以及它在6個不同的任務(包括推薦和自然語言處理)中的理論有效性和經驗有效性;第6章是我們如何在SSE的幫助下,為最先進的序列推薦模型引入個性化,這對于防止我們的個性化模型對訓練數據的過度擬合起到了重要的作用;第7章,我們總結了目前所取得的成果,并展望了未來的發展方向;第八章是所有章節的附錄。

付費5元查看完整內容

本文是慕尼黑大學數學、信息學及統計學院的博士生Pankaj Gupta的博士學位論文,主要研究兩個NLP任務:關系提取和主題建模。本文將神經網絡和主題模型兩種互補的學習范式結合在一個神經復合模型中,使我們能夠通過主題模型在文檔集合中共同學習主題結構,并通過語言模型在句子中共同學習單詞關系。

慕尼黑大學自19世紀以來便是德國和歐洲最具聲望大學之一,也是德國精英大學、U15大學聯盟和歐洲研究型大學聯盟成員,其社會科學、人文科學、物理,化學,生命科學,醫學,數學等領域均在國際上享有盛名。本文是慕尼黑大學數學、信息學及統計學院的博士生Pankaj Gupta的博士學位論文。

自然語言處理(Natural language processing,NLP)涉及構建計算技術,允許計算機自動分析和有意義地表示人類語言。隨著數字時代數據的指數增長,基于NLP的系統的出現使我們能夠通過廣泛的應用程序,如網絡搜索引擎、語音助理等,輕松地訪問相關信息。為了實現這一目標,幾十年來的一項長期研究一直集中在NLP和機器學習交叉的技術上。

近年來,深度學習技術利用了人工神經網絡(ANNs)的表現力,在廣泛的NLP任務中取得了最先進的性能。深度神經網絡(DNNs)可以從輸入數據中自動提取復雜的特征,從而為手工特征工程提供了一種替代方法。除了ANN之外,概率圖形模型(PGMs)、圖論和概率方法的耦合還具有描述系統隨機變量之間因果結構的能力,并捕捉到不確定性的原則概念。考慮到DNNs和PGMs的特點,它們被有利地結合起來建立強大的神經模型,以了解數據的潛在復雜性。

傳統的基于機器學習的NLP系統采用了淺層計算方法(如SVM或Logistic回歸),并依賴于手工特征,這類方法耗時、復雜且往往是不夠完整的。基于深度學習和神經網絡的方法最近在機器翻譯、文本分類、命名識別、關系提取、文本相似性等NLP任務上取得了較好的效果。這些神經模型可以從訓練數據中自動提取有效的特征表示。

本文主要研究兩個NLP任務:關系提取和主題建模。前者的目的是識別句子或文檔中實體或名詞之間的語義關系。成功地提取語義關系有助于構建結構化知識庫,在網絡搜索、問答、推薦引擎等下游NLP應用領域很有用。另一方面,主題建模的任務旨在理解文檔集合中的主題結構。主題建模是一種流行的文本挖掘工具,它可以自動分析大量的文檔集合,并在不實際閱讀的情況下理解主題語義。主題建模分別生成用于文檔理解和信息檢索的Word集群(即主題)和文檔表示。

本質上,關系提取和主題建模主要基于從文本中學習到的表示的質量。在本文中,我們提出了特定于任務的學習表示神經模型,并分別在監督和非監督機器學習范式領域進行關系提取和主題建模任務。更具體地說,我們在開發NLP任務的神經模型方面做出了以下貢獻:

神經關系提取:首先,我們提出了一種新的基于遞歸神經網絡的table-filling體系結構,以便在句子中聯合執行實體和關系提取。然后,我們進一步擴展了跨句子邊界實體之間關系的提取范圍,并提出了一種新的基于依賴關系的神經網絡體系結構。這兩個貢獻在于機器學習的監督范式。此外,我們還在構建一個受缺乏標記數據約束的魯棒關系提取器方面做出了貢獻,其中我們提出了一種新的弱監督引導技術。考慮到這些貢獻,我們進一步探索了遞歸神經網絡的可解釋性,以解釋它們對關系提取的預測。

神經主題建模:除了有監督神經體系結構外,我們還開發了無監督神經模型,以學習主題建模框架中有意義的文檔表示。首先,我們提出了一種新的動態主題模型,它捕獲了隨著時間的推移的主題。接下來,我們在不考慮時間依賴性的情況下建立了靜態主題模型,其中我們提出了神經主題建模體系結構,這些體系結構也利用外部知識,即Word嵌入來解決數據稀疏性。此外,我們還開發了神經主題模型,其中包含了使用單詞嵌入和來自許多來源的潛在主題的知識遷移。最后,我們通過引入語言結構(如語序、局部句法和語義信息等)來改進神經主題建模。它處理傳統主題模型中的詞袋問題。本節中提出的神經NLP模型是基于PGMs、深度學習和ANN交叉技術。

在這里,神經關系提取的任務使用神經網絡來學習通常在句子級別上的表示,而不訪問更廣泛的文檔上下文。然而,主題模型可以訪問跨文檔的統計信息。因此,我們將兩種互補的學習范式結合在一個神經復合模型中是有利的,它由一個神經主題和一個神經語言模型組成,使我們能夠通過主題模型在文檔集合中共同學習主題結構,并通過語言模型在句子中共同學習單詞關系。

總的來說,我們在本論文中的研究貢獻擴展了基于NLP的系統,用于關系提取和主題建模任務,同時具有最先進的性能。

付費5元查看完整內容

作者Jacob Andreas是自然語言處理的研究者,研究興趣為用語言作為更有效學習的支架和理解模型行為的探針,以及結合深度表示和離散組合性優點的結構化神經方法。近期公開發布了他的博士論文。

博士論文介紹:

本文探討了語言結構在結構和參數化中用于語言處理和其他應用的機器學習模型的方法。作者將該模型應用于問答系統,指令跟蹤,圖像分類等多種任務。

作者首先介紹一類稱為神經模塊網絡(NMN)的模型,并介紹它們在自然語言問答中的應用。NMN旨在實現同時利用深層網絡的表征能力和構成問題的語言結構。我們的方法將問題分解為語言子結構,并使用這些子結構動態地從可重復使用的模塊庫構建網絡。由此產生的復合網絡是共同訓練的。作者并在含有圖像和結構化知識庫的問答數據集上的方法評估模型。隨后,作者將這種思想轉移到策略學習中,研究在面對不同但相似的問題時,怎么組合策略。

付費5元查看完整內容
北京阿比特科技有限公司