亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在過去的20年里,基因組學、神經科學、經濟學和互聯網服務等許多領域產生了越來越多的大數據集,這些數據集有高維、大樣本,或者兩者兼之。這為我們從數據中檢索和推斷有價值的信息提供了前所未有的機會。同時,也對統計方法和計算算法提出了新的挑戰。一方面,我們希望建立一個合理的模型來捕獲所需的結構,并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能成為一個巨大的障礙,以得出有意義的結論。這篇論文站在兩個主題的交叉點,提出了統計方法來捕獲所需的數據結構,并尋求可擴展的方法來優化計算非常大的數據集。我們提出了一種可擴展的靈活框架,用于利用lasso/elastic-net解決大規模稀疏回歸問題; 提出了一種可伸縮的框架,用于在存在多個相關響應和其他細微差別(如缺失值)的情況下解決稀疏縮減秩回歸問題。分別在snpnet和multiSnpnet R包中以PLINK 2.0格式為基因組數據開發了優化的實現。這兩種方法在超大和超高維的英國生物樣本庫研究中得到了驗證,與傳統的預測建模方法相比有了顯著的改進。此外,我們考慮了一類不同的高維問題,異質因果效應的估計。與監督學習的設置不同,這類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得處理之間真正差異的基本真相。我們提出適應非參數統計學習方法,特別是梯度增強和多元自適應回歸樣條,以估計處理效果的預測器可用。實現被打包在一個R包causalLearning中。

付費5元查看完整內容

相關內容

主題: A computational framework for learning and transforming task representations

摘要: 本文首先回顧了關于認知靈活性的文獻,以及在構建更靈活的人工智能系統方面的最新進展。作者提供了這些文獻的綜述,并概述了他認為仍然存在的挑戰。作者特別關注基于零任務(即沒有任何數據)的新任務適應新任務的能力,該任務基于它們與先前任務的關系。為了應對這一挑戰,作者提出了一個通用的計算框架,用于根據新任務與先前任務的關系來適應新任務。該框架基于元映射,即轉換基本任務的高階任務。以同音元映射架構的形式提出了該框架的簡約實現。作者將在從回歸到圖像分類和強化學習的各種任務和計算范例中演示該框架。作者將人類的適應能力和基于語言的零任務執行方法進行了比較。作者成功地展示了元映射,即使新任務直接與先前的經驗相矛盾,通常在一項新任務上也能達到80-90%的性能。作者進一步證明,以這種適應為起點可以極大地加速以后對某項任務的學習,并將掌握過程中所犯的錯誤減少近一個數量級。因此,作者建議元映射可以為適應新任務提供計算基礎,并為有效學習提供起點。因此,本文為建立更好的認知模型和更靈活的人工智能系統提供了框架。最后一章回顧了這項工作對有關智力必要的計算原理的持續討論所做出的更廣泛的貢獻,并強調了從理解數學認知到神經科學的未來可能方向。

付費5元查看完整內容

凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。

付費5元查看完整內容

主題: Large-scale and high-dimensional statistical learning methods and algorithms

摘要: 在過去的二十年中,基因組學,神經科學,經濟學和互聯網服務等許多領域已經產生了越來越大的,具有高維,大樣本量或兩者兼有的數據集。這為我們提供了前所未有的機會,可以從數據中檢索和推斷出有價值的信息。同時,這也給統計方法和計算算法提出了新的挑戰。一方面,我們希望制定一個合理的模型來捕獲所需的結構并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能是一個很難得出有意義結論的障礙。本文站在兩個主題的交集上,提出了統計方法來捕獲數據中的所需結構,并尋求可擴展的方法來優化超大型數據集的計算。我們提出了使用套索/彈性網解決大規模稀疏回歸問題的可擴展且靈活的框架,以及在存在多個相關響應和其他細微差別(例如缺失值)的情況下解決稀疏降階回歸的可擴展框架。針對R軟件包snpnet和multiSnpnet中PLINK 2.0格式的基因組數據開發了優化的實現。這兩種方法已在UK Biobank的超大型和超大規模研究中得到證明,并且與傳統的預測建模方法相比有了顯著改進。此外,我們考慮另一類高維問題,即異類因果效應估計。與監督學習不同,此類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得治療之間真正差異的地面真理。我們建議采用非參數統計學習方法,尤其是梯度增強和多元自適應回歸樣條,以根據可用的預測因子來估計治療效果。

付費5元查看完整內容

【導讀】《機器學習:貝葉斯和優化的視角》是雅典大學信息學和通信系的教授Sergios Theodoridis的經典著作,對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。非常值得學習。

Sergios Theodoridis教授是雅典大學信息學和通信系的教授,香港中文大學(深圳)客座教授。他的研究領域是信號處理和機器學習。他的研究興趣是自適應算法,分布式和稀疏性感知學習,機器學習和模式識別,生物醫學應用中的信號處理和學習以及音頻處理和檢索。

他的幾本著作與合著蜚聲海內外,包括《機器學習:貝葉斯和優化的視角》以及暢銷書籍《模式識別》。他是2017年EURASIP Athanasios Papoulis獎和2014年EURASIP Meritorious Service獎的獲得者。

//cgi.di.uoa.gr/~stheodor/

機器學習:貝葉斯和優化方法

本書對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。其中,經典方法包括平均/小二乘濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法等,新趨勢包括稀疏、凸分析與優化、在線分布式算法、RKH空間學習、貝葉斯推斷、圖模型與隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模等。全書構建了一套明晰的機器學習知識體系,各章內容相對獨立,物理推理、數學建模和算法實現精準且細致,并輔以應用實例和習題。本書適合該領域的科研人員和工程師閱讀,也適合學習模式識別、統計/自適應信號處理和深度學習等課程的學生參考。

付費5元查看完整內容

本文介紹了一階優化方法及其在機器學習中的應用。這不是一門關于機器學習的課程(特別是它不涉及建模和統計方面的考慮),它側重于使用和分析可以擴展到具有大量參數的大型數據集和模型的廉價方法。這些方法都是圍繞“梯度下降”的概念而變化的,因此梯度的計算起著主要的作用。本課程包括最優化問題的基本理論性質(特別是凸分析和一階微分學)、梯度下降法、隨機梯度法、自動微分、淺層和深層網絡。

付費5元查看完整內容

本文介紹了一階優化方法及其在機器學習中的應用。這不是一門關于機器學習的課程(特別是它不涉及建模和統計方面的考慮),它側重于使用和分析可以擴展到具有大量參數的大型數據集和模型的廉價方法。這些方法都是圍繞“梯度下降”的概念而變化的,因此梯度的計算起著主要的作用。本課程包括最優化問題的基本理論性質(特別是凸分析和一階微分學)、梯度下降法、隨機梯度法、自動微分、淺層和深層網絡。

付費5元查看完整內容

摘要:

本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。

作者介紹:

Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。

//www.cs.princeton.edu/~ehazan/

付費5元查看完整內容

【導讀】分布式機器學習Distributed Machine Learning是學術界和工業界關注的焦點。最近來自荷蘭的幾位研究人員撰寫了關于分布式機器學習的綜述,共33頁pdf和172篇文獻,概述了分布式機器學習相對于傳統(集中式)機器學習的挑戰和機遇,討論了用于分布式機器學習的技術,并對可用的系統進行了概述,從而全面概述了該領域的最新進展

?論文地址: //www.zhuanzhi.ai/paper/161029da3ed8b6027a1199c026df7d07 ?

摘要 在過去的十年里,對人工智能的需求顯著增長,而機器學習技術的進步和利用硬件加速的能力推動了這種增長。然而,為了提高預測的質量并使機器學習解決方案在更復雜的應用中可行,需要大量的訓練數據。雖然小的機器學習模型可以用少量的數據進行訓練,但訓練大模型(如神經網絡)的輸入隨著參數的數量呈指數增長。由于處理訓練數據的需求已經超過了計算機器計算能力的增長,因此需要將機器學習的工作負載分布到多臺機器上,并將集中式的學習任務轉換為分布式系統。這些分布式系統提出了新的挑戰,首先是訓練過程的有效并行化和一致模型的創建。本文概述了分布式機器學習相對于傳統(集中式)機器學習的挑戰和機遇,討論了用于分布式機器學習的技術,并對可用的系統進行了概述,從而全面概述了該領域的最新進展。

1. 引言

近年來,新技術的快速發展導致了數據采集的空前增長。機器學習(ML)算法正越來越多地用于分析數據集和構建決策系統,因為問題的復雜性,算法解決方案是不可行的。例如控制自動駕駛汽車[23],識別語音[8],或者預測消費者行為[82]。

在某些情況下,訓練模型的長時間運行會引導解決方案設計者使用分布式系統來增加并行性和I/O帶寬總量,因為復雜應用程序所需的訓練數據很容易達到tb級的[29]。在其他情況下,當數據本身就是分布式的,或者數據太大而不能存儲在一臺機器上時,集中式解決方案甚至都不是一個選項。例如,大型企業對存儲在不同位置的[19]的數據進行事務處理,或者對大到無法移動和集中的天文數據進行事務處理[125]。

為了使這些類型的數據集可作為機器學習問題的訓練數據,必須選擇和實現能夠并行計算、數據分布和故障恢復能力的算法。在這一領域進行了豐富多樣的研究生態系統,我們將在本文中對其進行分類和討論。與之前關于分布式機器學習([120][124])或相關領域的調查([153][87][122][171][144])相比,我們對該問題應用了一個整體的觀點,并從分布式系統的角度討論了最先進的機器學習的實踐方面。

第2節深入討論了機器學習的系統挑戰,以及如何采用高性能計算(HPC)的思想來加速和提高可擴展性。第3節描述了分布式機器學習的參考體系結構,涵蓋了從算法到網絡通信模式的整個堆棧,這些模式可用于在各個節點之間交換狀態。第4節介紹了最廣泛使用的系統和庫的生態系統及其底層設計。最后,第5節討論了分布式機器學習的主要挑戰

2. 機器學習——高性能計算的挑戰?

近年來,機器學習技術在越來越復雜的應用中得到了廣泛應用。雖然出現了各種相互競爭的方法和算法,但所使用的數據表示在結構上驚人地相似。機器學習工作負載中的大多數計算都是關于向量、矩陣或張量的基本轉換——這是線性代數中眾所周知的問題。優化這些操作的需求是高性能計算社區數十年來一個非常活躍的研究領域。因此,一些來自HPC社區的技術和庫(如BLAS[89]或MPI[62])已經被機器學習社區成功地采用并集成到系統中。與此同時,HPC社區已經發現機器學習是一種新興的高價值工作負載,并開始將HPC方法應用于它們。Coates等人,[38]能夠在短短三天內,在他們的商用現貨高性能計算(COTS HPC)系統上訓練出一個10億個參數網絡。You等人[166]在Intel的Knights Landing(一種為高性能計算應用而設計的芯片)上優化了神經網絡的訓練。Kurth等人[84]證明了像提取天氣模式這樣的深度學習問題如何在大型并行高性能計算系統上進行優化和快速擴展。Yan等人[163]利用借鑒于HPC的輕量級概要分析等技術對工作負載需求進行建模,解決了在云計算基礎設施上調度深度神經網絡應用程序的挑戰。Li等人[91]研究了深度神經網絡在加速器上運行時對硬件錯誤的彈性特性,加速器通常部署在主要的高性能計算系統中。

與其他大規模計算挑戰一樣,加速工作負載有兩種基本的、互補的方法:向單個機器添加更多資源(垂直擴展或向上擴展)和向系統添加更多節點(水平擴展或向外擴展)。

3. 一個分布式機器學習的參考架構

avatar

圖1 機器學習的概述。在訓練階段,利用訓練數據和調整超參數對ML模型進行優化。然后利用訓練后的模型對輸入系統的新數據進行預測。

avatar

圖2 分布式機器學習中的并行性。數據并行性在di上訓練同一個模型的多個實例!模型并行性將單個模型的并行路徑分布到多個節點。

機器學習算法

機器學習算法學習根據數據做出決策或預測。我們根據以下三個特征對當前的ML算法進行了分類:

反饋、在學習過程中給算法的反饋類型

目的、期望的算法最終結果

方法、給出反饋時模型演化的本質

反饋 訓練算法需要反饋,這樣才能逐步提高模型的質量。反饋有幾種不同類型[165]:

包括 監督學習、無監督學習、半監督學習與強化學習

目的 機器學習算法可用于各種各樣的目的,如對圖像進行分類或預測事件的概率。它們通常用于以下任務[85]: 異常檢測、分類、聚類、降維、表示學習、回歸

每一個有效的ML算法都需要一種方法來迫使算法根據新的輸入數據進行改進,從而提高其準確性。通過算法的學習方式,我們識別出了不同的ML方法組: 演化算法、隨機梯度下降、支持向量機、感知器、神經網絡、規則機器學習、主題模型、矩陣分解。

avatar

圖3所示:基于分布程度的分布式機器學習拓撲

4. 分布式機器學習生態系統

avatar

圖4所示。分布式機器學習生態系統。通用分布式框架和單機ML系統和庫都在向分布式機器學習靠攏。云是ML的一種新的交付模型。

5 結論和當前的挑戰

分布式機器學習是一個蓬勃發展的生態系統,它在體系結構、算法、性能和效率方面都有各種各樣的解決方案。為了使分布式機器學習在第一時間成為可行的,必須克服一些基本的挑戰,例如,建立一種機制,使數據處理并行化,同時將結果組合成一個單一的一致模型。現在有工業級系統,針對日益增長的欲望與機器學習解決更復雜的問題,分布式機器學習越來越普遍和單機解決方案例外,類似于數據處理一般發展在過去的十年。然而,對于分布式機器學習的長期成功來說,仍然存在許多挑戰:性能、容錯、隱私、可移植性等。

付費5元查看完整內容
北京阿比特科技有限公司