凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。
專注于識別和解決應用中出現的凸優化問題。凸集、函數和優化問題。凸分析基礎。最小二乘、線性和二次規劃、半定規劃、極大極小、極值體積等問題。最優性條件,對偶理論,備選定理,及應用。內點法。應用于信號處理,統計和機器學習,控制和機械工程,數字和模擬電路設計,和金融。
這本書來自統計學習課程,這是一門統計機器學習的入門課程,面向具有一些微積分、線性代數和統計學背景的學生。這門課程的重點是監督學習:分類和回歸。本課程將涵蓋機器學習和數據科學中使用的一系列方法,包括:
這些方法將在整個課程中被研究并應用于來自各種應用的真實數據。課程還涵蓋了一些重要的實際問題,如交叉驗證、模型選擇和偏方差權衡。課程包括理論(例如,推導和證明)以及實踐(特別是實驗室和小型項目)。實際部分將使用Python實現。
在過去的20年里,基因組學、神經科學、經濟學和互聯網服務等許多領域產生了越來越多的大數據集,這些數據集有高維、大樣本,或者兩者兼之。這為我們從數據中檢索和推斷有價值的信息提供了前所未有的機會。同時,也對統計方法和計算算法提出了新的挑戰。一方面,我們希望建立一個合理的模型來捕獲所需的結構,并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能成為一個巨大的障礙,以得出有意義的結論。這篇論文站在兩個主題的交叉點,提出了統計方法來捕獲所需的數據結構,并尋求可擴展的方法來優化計算非常大的數據集。我們提出了一種可擴展的靈活框架,用于利用lasso/elastic-net解決大規模稀疏回歸問題; 提出了一種可伸縮的框架,用于在存在多個相關響應和其他細微差別(如缺失值)的情況下解決稀疏縮減秩回歸問題。分別在snpnet和multiSnpnet R包中以PLINK 2.0格式為基因組數據開發了優化的實現。這兩種方法在超大和超高維的英國生物樣本庫研究中得到了驗證,與傳統的預測建模方法相比有了顯著的改進。此外,我們考慮了一類不同的高維問題,異質因果效應的估計。與監督學習的設置不同,這類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得處理之間真正差異的基本真相。我們提出適應非參數統計學習方法,特別是梯度增強和多元自適應回歸樣條,以估計處理效果的預測器可用。實現被打包在一個R包causalLearning中。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。
摘要:
本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。
作者介紹:
Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。
本文是慕尼黑大學數學、信息學及統計學院的博士生Pankaj Gupta的博士學位論文,主要研究兩個NLP任務:關系提取和主題建模。本文將神經網絡和主題模型兩種互補的學習范式結合在一個神經復合模型中,使我們能夠通過主題模型在文檔集合中共同學習主題結構,并通過語言模型在句子中共同學習單詞關系。
慕尼黑大學自19世紀以來便是德國和歐洲最具聲望大學之一,也是德國精英大學、U15大學聯盟和歐洲研究型大學聯盟成員,其社會科學、人文科學、物理,化學,生命科學,醫學,數學等領域均在國際上享有盛名。本文是慕尼黑大學數學、信息學及統計學院的博士生Pankaj Gupta的博士學位論文。
自然語言處理(Natural language processing,NLP)涉及構建計算技術,允許計算機自動分析和有意義地表示人類語言。隨著數字時代數據的指數增長,基于NLP的系統的出現使我們能夠通過廣泛的應用程序,如網絡搜索引擎、語音助理等,輕松地訪問相關信息。為了實現這一目標,幾十年來的一項長期研究一直集中在NLP和機器學習交叉的技術上。
近年來,深度學習技術利用了人工神經網絡(ANNs)的表現力,在廣泛的NLP任務中取得了最先進的性能。深度神經網絡(DNNs)可以從輸入數據中自動提取復雜的特征,從而為手工特征工程提供了一種替代方法。除了ANN之外,概率圖形模型(PGMs)、圖論和概率方法的耦合還具有描述系統隨機變量之間因果結構的能力,并捕捉到不確定性的原則概念。考慮到DNNs和PGMs的特點,它們被有利地結合起來建立強大的神經模型,以了解數據的潛在復雜性。
傳統的基于機器學習的NLP系統采用了淺層計算方法(如SVM或Logistic回歸),并依賴于手工特征,這類方法耗時、復雜且往往是不夠完整的。基于深度學習和神經網絡的方法最近在機器翻譯、文本分類、命名識別、關系提取、文本相似性等NLP任務上取得了較好的效果。這些神經模型可以從訓練數據中自動提取有效的特征表示。
本文主要研究兩個NLP任務:關系提取和主題建模。前者的目的是識別句子或文檔中實體或名詞之間的語義關系。成功地提取語義關系有助于構建結構化知識庫,在網絡搜索、問答、推薦引擎等下游NLP應用領域很有用。另一方面,主題建模的任務旨在理解文檔集合中的主題結構。主題建模是一種流行的文本挖掘工具,它可以自動分析大量的文檔集合,并在不實際閱讀的情況下理解主題語義。主題建模分別生成用于文檔理解和信息檢索的Word集群(即主題)和文檔表示。
本質上,關系提取和主題建模主要基于從文本中學習到的表示的質量。在本文中,我們提出了特定于任務的學習表示神經模型,并分別在監督和非監督機器學習范式領域進行關系提取和主題建模任務。更具體地說,我們在開發NLP任務的神經模型方面做出了以下貢獻:
神經關系提取:首先,我們提出了一種新的基于遞歸神經網絡的table-filling體系結構,以便在句子中聯合執行實體和關系提取。然后,我們進一步擴展了跨句子邊界實體之間關系的提取范圍,并提出了一種新的基于依賴關系的神經網絡體系結構。這兩個貢獻在于機器學習的監督范式。此外,我們還在構建一個受缺乏標記數據約束的魯棒關系提取器方面做出了貢獻,其中我們提出了一種新的弱監督引導技術。考慮到這些貢獻,我們進一步探索了遞歸神經網絡的可解釋性,以解釋它們對關系提取的預測。
神經主題建模:除了有監督神經體系結構外,我們還開發了無監督神經模型,以學習主題建模框架中有意義的文檔表示。首先,我們提出了一種新的動態主題模型,它捕獲了隨著時間的推移的主題。接下來,我們在不考慮時間依賴性的情況下建立了靜態主題模型,其中我們提出了神經主題建模體系結構,這些體系結構也利用外部知識,即Word嵌入來解決數據稀疏性。此外,我們還開發了神經主題模型,其中包含了使用單詞嵌入和來自許多來源的潛在主題的知識遷移。最后,我們通過引入語言結構(如語序、局部句法和語義信息等)來改進神經主題建模。它處理傳統主題模型中的詞袋問題。本節中提出的神經NLP模型是基于PGMs、深度學習和ANN交叉技術。
在這里,神經關系提取的任務使用神經網絡來學習通常在句子級別上的表示,而不訪問更廣泛的文檔上下文。然而,主題模型可以訪問跨文檔的統計信息。因此,我們將兩種互補的學習范式結合在一個神經復合模型中是有利的,它由一個神經主題和一個神經語言模型組成,使我們能夠通過主題模型在文檔集合中共同學習主題結構,并通過語言模型在句子中共同學習單詞關系。
總的來說,我們在本論文中的研究貢獻擴展了基于NLP的系統,用于關系提取和主題建模任務,同時具有最先進的性能。
課程介紹
在人工智能、統計學、計算機系統、計算機視覺、自然語言處理和計算生物學等許多領域中的問題,都可以被視為從局部信息中尋找一致的全局結論。概率圖模型框架為這些普遍問題提供了統一的視角解決方案,支持在具有大量屬性和龐大數據集的問題中進行有效的推理、決策和學習。本研究生課程將為您運用圖模型到復雜的問題和解決圖模型的核心研究課題提供堅實的基礎。
課程大綱
講師:邢波
講師簡介
邢波,卡耐基梅隆大學教授,曾于2014年擔任國際機器學習大會(ICML)主席。主要研究興趣集中在機器學習和統計學習方法論及理論的發展,和大規模計算系統和架構的開發。他創辦了Petuum 公司,這是一家專注于人工智能和機器學習的解決方案研發的公司,騰訊曾投資了這家公司。
個人主頁:
本文為大家帶來了一份斯坦福大學的最新課程CS236——深度生成模型,目前更新到第一課,感興趣的同學可以多多關注,跟隨學習。
生成式模型被廣泛應用到人工智能和機器學習的諸多領域當中。最近,通過結合隨機梯度下降的優化方法,使用深度神經網絡參數化這些模型所取得的進展,已經使得對于包括圖像,文本和語音在內的復雜,高維度數據建模成為可能。在本次課程中,我們將要學習深度生成式模型的概率基礎和學習算法,包括自動編碼器(AE)的各種變體,生成式對抗網絡,自回歸模型和標準化流模型(normalizing flow models)。本課程還將討論從深度生成式模型中獲益的應用領域,例如計算機視覺,語音,自然語言處理,圖挖掘和強化學習。
CMU大神博士生Brandon Amos,馬上就要畢業了。博士期間,他在可微優化機器學習建模方向,發表了ICLR 一篇,ICML 三篇,NeurIPS 三篇,分析了可微優化機器學習建模的很多問題。近日,他將自己的博士論文也開放了出來,系統的講述了可微優化機器學習建模的方方面面。
博士論文簡介
我們提出了兩種基于優化建模的基本方法:
然后,我們將展示如何使用OptNet方法,1)將無模型和基于模型的強化學習與可微最優控制相結合,2)針對top-k學習問題,我們展示了如何將cvxpy領域特定的語言轉換為可微優化層,從而實現本文方法的快速原型化。