亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

課程介紹

在人工智能、統計學、計算機系統、計算機視覺、自然語言處理和計算生物學等許多領域中的問題,都可以被視為從局部信息中尋找一致的全局結論。概率圖模型框架為這些普遍問題提供了統一的視角解決方案,支持在具有大量屬性和龐大數據集的問題中進行有效的推理、決策和學習。本研究生課程將為您運用圖模型到復雜的問題和解決圖模型的核心研究課題提供堅實的基礎。

課程大綱

  • 模塊1 - 簡介,表示形式和精確推斷
  • 模塊2 - 近似推斷
  • 模塊3 - 深度學習和生成模型
  • 模塊4 - 通過GM中的推理進行強化學習和控制
  • 模塊5 - 非參數方法
  • 模塊6 - 模塊化和可擴展的算法和系統

講師:邢波

講師簡介

邢波,卡耐基梅隆大學教授,曾于2014年擔任國際機器學習大會(ICML)主席。主要研究興趣集中在機器學習和統計學習方法論及理論的發展,和大規模計算系統和架構的開發。他創辦了Petuum 公司,這是一家專注于人工智能和機器學習的解決方案研發的公司,騰訊曾投資了這家公司。

個人主頁

//www.cs.cmu.edu/~epxing/

付費5元查看完整內容

相關內容

 (Carnegie Mellon University)坐落在賓夕法尼亞州的匹茲堡,是一所享譽世界的私立頂級研究型大學,學校面積不大,學科門類不多,但在其所設立的幾乎所有專業都居于世界領先水平。卡內基梅隆大學享譽全國的認知心理學、管理和公共關系學、寫作和修辭學、應用歷史學、哲學和生物科學專業。它的計算機、機器人科學、理學、美術及工業管理都是舉世公認的一流專業。

【導讀】卡內基梅隆大學(CMU),在2020年春季學習繼續開設了由Eric P. Xing教授執教的經典課程《Probabilistic Graphical Models》(概率圖模型)。這門課程從2005年開設至今,已經有十多個年頭了。它影響了一代又一代計算機學者,為學界培養了大量機器學習人才。直到如今,概率圖模型仍然是機器學習領域非常火熱的方向,感興趣的同學不要錯過。

課程簡介

在人工智能、統計學、計算機系統、計算機視覺、自然語言處理和計算生物學等許多其他領域中,許多問題都可以看作是從局部信息中尋找一致的全局結論。概率圖模型框架為這一范圍廣泛的問題提供了統一的視角,支持對具有大量屬性和龐大數據集的問題進行有效的推理、決策和學習。無論是應用圖模型來解決復雜問題還是作為將圖模型作為核心研究課題,本課程都能為你打下堅實基礎。

邢波 Eric P. Xing 教授

Eric P.Xing是卡內基梅隆大學(Carnegie Mellon University)計算機科學教授,是2018年世界經濟論壇(World Economic Forum)技術先驅公司Petuum Inc.的創始人、首席執行官和首席科學家,該公司為廣泛和通用的工業人工智能應用構建標準化人工智能開發平臺和操作系統。美國新澤西州立大學分子生物學與生物化學博士;美國加州大學伯克利分校(UC,Berkeley)計算機科學博士。主要研究興趣集中在機器學習和統計學習方法論及理論的發展,和大規模計算系統和架構的開發,以解決在復雜系統中的高維、多峰和動態的潛在世界中的自動化學習、推理以及決策問題。目前或曾經擔任《美國統計協會期刊》(JASA)、《應用統計年鑒》(AOAS)、《IEEE模式分析與機器智能學報》(PAMI)和《PLoS計算生物學雜志》(the PLoS JournalofComputational Biology)的副主編,《機器學習雜志》(MLJ)和《機器學習研究雜志》(JMLR)的執行主編,還是美國國防部高級研究計劃署(DARPA)信息科學與技術顧問組成員,曾獲得美國國家科學基金會(NSF)事業獎、Alfred P. Sloan學者獎、美國空軍青年學者獎以及IBM開放協作研究學者獎等,以及多次論文獎。曾于2014年擔任國際機器學習大會(ICML)主席。

//www.cs.cmu.edu/~epxing/

課程信息:

  • 課程網站:
  • 教師: Eric P. Xing (epxing@cs)
  • 時間: MW 12:00-1:20pm
  • 地點: Wean 7500
  • 辦公時間: Mon 1:30-2:30pm GHC 8101
  • Piazza:
  • Gradescope:
  • 助教 (email, office hours):
    • Xun Zheng (xzheng1@andrew, Fri 4-5pm GHC 8013)
    • Ben Lengerich (blengeri@andrew, Thu 10-11am GHC 9005)
    • Haohan Wang (haohanw@andrew, Fri 5-6pm)
    • Yiwen Yuan (yiweny@andrew, Tue 1:50-2:50pm, outside GHC 8011)
    • Xiang Si (xsi@andrew, Wed 2-3pm, GHC Citadel Commons)
    • Junxian He (junxian1@andrew, Mon 4-5pm GHC 6603)
付費5元查看完整內容

【導讀】2020新年伊始,多倫多大學Amir-massoud Farahmand和Emad A. M. Andrews博士開設了機器學習導論課程,介紹了機器學習的主要概念和思想,并概述了許多常用的機器學習算法。它還可以作為更高級的ML課程的基礎。

課程地址:

//amfarahmand.github.io/csc311/

機器學習(ML)是一組技術,它允許計算機從數據和經驗中學習,而不需要人工指定所需的行為。ML在人工智能作為一個學術領域和工業領域都變得越來越重要。本課程介紹了機器學習的主要概念和思想,并概述了許多常用的機器學習算法。它還可以作為更高級的ML課程的基礎。

本課程結束時,學生將學習(大致分類)

  • 機器學習問題:監督(回歸和分類),非監督(聚類,降維),強化學習

  • 模型:線性和非線性(基擴展和神經網絡)

  • 損失函數:平方損失、交叉熵、鉸鏈、指數等。

  • Regularizers: l1和l2

  • 概率觀點:最大似然估計,最大后驗,貝葉斯推理

  • 偏差和方差的權衡

  • 集成方法:Bagging 和 Boosting

  • ML中的優化技術: 梯度下降法和隨機梯度下降法

課程目錄:

參考資料:

(ESL) Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning, 2009.

(PRML) Christopher M. Bishop, Pattern Recognition and Machine Learning, 2006.

(RL) Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction, 2018.

(DL) Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016), Deep Learning

(MLPP) Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, 2013.

(ISL) Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, Introduction to Statistical Learning, 2017.

() Shai Shalev-Shwartz and Shai Ben-David Understanding Machine Learning: From Theory to Algorithms, 2014.

(ITIL) David MacKay, Information Theory, Inference, and Learning Algorithms, 2003.

付費5元查看完整內容

普林斯頓大學在19年春季學期,開設了COS 598D《機器學習優化》課程,課程主要介紹機器學習中出現的優化問題,以及解決這些問題的有效算法。前不久,課程教授Elad Hazan將其精心準備的課程講義開放了出來,講義內容詳實循序漸進,非常適合想要入門機器學習的同學閱讀。

COS 598D:Optimization for Machine Learning(機器學習優化)是普林斯頓大學在19年春季學期開設的課程。課程主要介紹機器學習中出現的優化問題,以及解決這些問題的有效算法。

課程內容涵蓋:

  • Introduction to convex analysis
  • first-order methods, convergence analysis
  • generalization and regret minimization
  • regularization
  • gradient descent++:
    • acceleration
    • variance reduction
    • adaptive preconditioning
  • 2nd order methods in linear time
  • projection-free methods and the Frank-Wolfe algorithm
  • zero-order optimization, convex bandit optimization
  • optimization for deep learning: large scale non-convex optimization
付費5元查看完整內容

主題: Introduction to Machine Learning

課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。

邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。

Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。

Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等

付費5元查看完整內容
北京阿比特科技有限公司