主題: Introduction to Machine Learning
課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。
邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。
Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。
Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等
主題: 11-785 Introduction to Deep Learning
簡介: 以深度神經網絡為代表的“深度學習”系統正日益接管所有人工智能任務,從語言理解、語音和圖像識別,到機器翻譯、規劃,甚至是游戲和自動駕駛。因此,在許多先進的學術環境中,深度學習的專業知識正迅速從一個深奧的理想轉變為一個強制性的先決條件,并在工業就業市場上占有很大優勢。在本課程中,我們將學習深層神經網絡的基礎知識,以及它們在各種人工智能任務中的應用。課程結束時,學生將對本課程有相當的了解,并能將深度學習應用到各種任務中。他們還將通過進一步的研究來了解關于這一主題的許多現有文獻并擴展他們的知識。
主講人簡介: Bhiksha Raj,卡內基梅隆大學計算機學院教授,IEEE研究員。個人主頁://mlsp.cs.cmu.edu/people/bhiksha/index.php
主題: 《COMS W4995 Applied Machine Learning Spring 2020》
課程描述: 這門課提供了機器學習和數據科學的實踐方法。本課程討論機器學習方法如SVMs、隨機森林、梯度提升和神經網絡在真實世界數據集上的應用,包括數據準備、模型選擇和評估。這個類補充了COMS W4721,因為它完全依賴于scikit-learn和tensor flow中所有實現的可用開源實現。除了應用模型外,我們還將討論與產生離子化機器學習模型相關的軟件開發工具和實踐。
主講人簡介: Andreas C. Müller,哥倫比亞大學數據科學研究所的副研究員,也是O'Reilly《用Python進行機器學習簡介》一書的作者。他是scikit學習機學習庫的核心開發人員之一,我已經合作維護了幾年。他曾在紐約大學數據科學中心從事開源和開放科學研究,并在亞馬遜擔任機器學習科學家。個人主頁://amueller.github.io/
簡介: 圖是表示知識的有效方法。它們可以在一個統一的結構中表示不同類型的知識。生物科學和金融等領域已經開始積累大量的知識圖,但是它們缺乏從中提取見解的機器學習工具。
David Mack概述了自己相關想法并調查了最流行的方法。在此過程中,他指出了積極研究的領域,并共享在線資源和參考書目以供進一步研究。
作者介紹: David Mack是Octavian.ai的創始人和機器學習工程師,致力于探索圖機器學習的新方法。在此之前,他與他人共同創立了SketchDeck,這是一家由Y Combinator支持的初創公司,提供設計即服務。他擁有牛津大學的數學碩士學位和計算機科學的基礎,并擁有劍橋大學的計算機科學學士學位。
內容介紹: 本次報告涵蓋內容:為什么將圖應用在機器學習上;圖機器學習的不同方法。現存的圖機器學習往往會忽略數據中的上下文信息,使用圖可以獲取更多的潛在信息。圖的構建方法為節點分類、邊的預測,圖的分類以及邊的分類。兩個主要方法是使用機器學習算法將圖轉換為table,另一種方法是將圖轉換為網絡。在報告中作者詳細介紹了這兩種方法。
題目: Compositionality In Machine Learning
摘要:
現實世界是固有的結構,如句子是由詞語組成的,圖像是由物體組成的,物體本身是由部分組成的。人們如何度量這些,過程是合成的,而不是輸出的。本次教程主要講述了機器學習中的組合性,解釋了機器學習中組合模型的歷史以及原理,還講述了為什么我們要期望普通的模型是組成型學習者?
作者:
Angeliki Lazaridou是DeepMind的高級研究科學家,在此之前是Marco Baroni的研究生,在意大利特倫托大學(map)心智/腦科學中心CLIC實驗室從事基礎語言學習。在薩爾大學(University of Saarland)獲得了計算語言學理學碩士學位,研究情感分析,并獲得了伊拉斯謨?蒙德斯(Erasmus Mundus)語言與通信技術碩士獎學金(EM-LCT)的支持。研究興趣是緊急通信,計算語言學,自然語言處理,人工智能。
簡介: 機器學習是從數據和經驗中學習的算法研究。 它被廣泛應用于從醫學到廣告,從軍事到行人的各種應用領域。 CIML是一組入門資料,涵蓋了現代機器學習的大多數主要方面(監督學習,無監督學習,大幅度方法,概率建模,學習理論等)。 它的重點是具有嚴格主干的廣泛應用。 一個子集可以用于本科課程; 研究生課程可能涵蓋全部材料,然后再覆蓋一些。
作者介紹: Hal Daumé III,教授,他曾擔任Perotto教授職位,他現在Microsoft Research NYC的機器學習小組中。 研究方向是自然語言處理。
大綱介紹:
下載鏈接: //pan.baidu.com/s/1QwSGTioJxDCRvlkBqcJr_A
提取碼:fwbq
作者介紹: Nils J. Nilsson,斯坦福大學計算機科學系工程學教授,于1958年從斯坦福大學獲得電氣工程博士學位。他在SRI International人工智能中心工作了23年,研究方向是通過統計和神經網絡方法進行模式識別,發明A*啟發式搜索算法和STRIPS自動計劃系統,并指導集成移動機器人SHAKEY的工作。他出版了五本關于人工智能的教科書和其他書籍。
章節介紹:
書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。
作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。
大綱介紹:
作者主頁://cs.nyu.edu/~mohri/
課程簡介
麻省理工學院的深度學習入門課程,適用于計算機視覺,自然語言處理,生物學等領域。主要內容包括深度序列建模,深度計算機視覺,深度生成模型,深度強化學習等。旨在讓學習者獲得深度學習算法的基礎知識,并獲得在TensorFlow中構建神經網絡的實踐經驗。
課程大綱
首席講師:Alexander Amini、Ava Soleimany
講師簡介
Alexander Amini在麻省理工學院獲得了電子工程和計算機科學的理學學士學位和碩士學位,目前為麻省理工學院(MIT)博士生 ,NSF研究員,MIT6.S191的主要組織者和講師:《深度學習入門》。研究重點是構建用于自主系統的端到端控制(即對執行的感知)的機器學習算法,并為這些算法制定保證。并且從事自動駕駛汽車的控制,深層神經網絡的置信度,人類移動性的數學建模以及構建復雜的慣性優化系統等方面的工作。
Ava Soleimany在麻省理工學院獲得了計算機科學和分子生物學的理學學士學位,目前為哈弗大學生物學理學博士、麻省理工學院博士生,同為MIT6.S191的主要組織者和講師:《深度學習入門》。
本課程涵蓋了機器學習和統計建模方面的廣泛主題。 雖然將涵蓋數學方法和理論方面,但主要目標是為學生提供解決實際中發現的數據科學問題所需的工具和原理。 本課程還可以作為基礎,以提供更多專業課程和進一步的獨立學習。 本課程是數據科學中心數據科學碩士學位課程核心課程的一部分。 此類旨在作為DS-GA-1001數據科學概論的延續,其中涵蓋了一些重要的基礎數據科學主題,而這些主題可能未在此DS-GA類中明確涵蓋。