亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

簡介: 圖是表示知識的有效方法。它們可以在一個統一的結構中表示不同類型的知識。生物科學和金融等領域已經開始積累大量的知識圖,但是它們缺乏從中提取見解的機器學習工具。

David Mack概述了自己相關想法并調查了最流行的方法。在此過程中,他指出了積極研究的領域,并共享在線資源和參考書目以供進一步研究。

作者介紹: David Mack是Octavian.ai的創始人和機器學習工程師,致力于探索圖機器學習的新方法。在此之前,他與他人共同創立了SketchDeck,這是一家由Y Combinator支持的初創公司,提供設計即服務。他擁有牛津大學的數學碩士學位和計算機科學的基礎,并擁有劍橋大學的計算機科學學士學位。

內容介紹: 本次報告涵蓋內容:為什么將圖應用在機器學習上;圖機器學習的不同方法。現存的圖機器學習往往會忽略數據中的上下文信息,使用圖可以獲取更多的潛在信息。圖的構建方法為節點分類、邊的預測,圖的分類以及邊的分類。兩個主要方法是使用機器學習算法將圖轉換為table,另一種方法是將圖轉換為網絡。在報告中作者詳細介紹了這兩種方法。

付費5元查看完整內容

相關內容

圖機器學習(Machine Learning on Graphs)是一項重要且普遍存在的任務,其應用范圍從藥物設計到社交網絡中的友情推薦。這個領域的主要挑戰是找到一種表示或編碼圖結構的方法,以便機器學習模型能夠輕松地利用它。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

題目: Introduction to Graph Neural Networks

簡介:

在復雜的實際應用中,圖是有用的數據結構,例如對物理系統進行建模,學習分子指紋,控制交通網絡以及在社交網絡中推薦朋友。但是,這些任務需要處理包含元素之間的豐富關系信息且無法通過傳統深度學習模型(例如卷積神經網絡(CNN)或遞歸神經網絡(RNN))妥善處理的非歐氏圖數據。圖中的節點通常包含有用的特征信息,這些信息在大多數無監督的表示學習方法(例如,網絡嵌入方法)中無法很好地解決。提出了圖神經網絡(GNN)來結合特征信息和圖結構,以通過特征傳播和聚集學習更好的圖表示。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖形分析工具。本書全面介紹了圖神經網絡的基本概念,模型和應用。首先介紹了香草GNN模型。然后介紹了vanil la模型的幾種變體,例如圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。還包括不同圖類型的變體和高級訓練方法。對于GNN的應用,該書將min分為結構,非結構和其他場景,然后介紹了解決這些任務的幾種典型模型。最后,最后幾章提供了GNN的開放資源以及一些未來方向的展望。

深度學習在許多領域都取得了可喜的進展,例如計算機視覺和自然語言處理。這些任務中的數據通常以歐幾里得表示。但是,許多學習任務需要處理包含元素之間豐富的關系信息的非歐氏圖數據,例如建模物理系統,學習分子指紋,預測蛋白質界面等。圖神經網絡(GNN)是基于深度學習的方法,在圖域上運行。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖形分析方法。本書全面介紹了圖神經網絡的基本概念,模型和應用。它從數學模型和神經網絡的基礎開始。在第一章中,它對GNN的基本概念進行了介紹,目的是為讀者提供一個概覽。然后介紹了GNN的不同變體:圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。這些最差的結果是將通用的深度學習技術轉化為圖形,例如卷積神經網絡,遞歸神經網絡,注意力機制和跳過連接。此外,這本書介紹了GNN在結構場景(物理,化學,知識圖譜),非結構場景(圖像,文本)和其他場景(生成模型,組合優化)中的不同應用。最后,這本書列出了相關的數據集,開源平臺和GNN的實現。本書組織如下。在第1章中進行了概述之后,在第2章中介紹了數學和圖論的一些基本知識。在第3章中介紹了神經網絡的基礎,然后在第4章中簡要介紹了香草GNN。四種類型的模型分別在第5、6、7和8章中介紹。在第9章和第10章中介紹了不同圖類型和高級訓練方法的其他變體。然后在第11章中提出了幾種通用的GNN框架。第12、13和14章介紹了GNN在結構場景,非結構場景和其他場景中的應用。最后,我們在第15章提供了一些開放資源,并在第16章總結了這本書。

付費5元查看完整內容

內容介紹:

計算機科學正在發展,以利用新的硬件,如GPU、TPUs、CPU和大型的集群。許多子領域,如機器學習和優化,已經調整了它們的算法來處理這樣的集群。

主題包括分布式和并行算法:優化、數值線性代數、機器學習、圖形分析、流形算法,以及其他在集群中難以擴展的問題。該類將重點分析程序,并使用Apache Spark和TensorFlow實現一些程序。

本課程將分為兩部分:首先,介紹并行算法的基礎知識和在單多核機器上的運行時分析。其次,我們將介紹在集群機器上運行的分布式算法。

付費5元查看完整內容

Perkovic對使用Python編程的介紹:作為應用程序開發的重點,第二版不僅僅是對編程的介紹。這是一本包羅萬象的計算機科學入門書,采用了“在正確的時間使用正確的工具”的教學方法,并側重于應用程序開發。該方法是實踐和問題導向的,與實踐問題和解決方案出現在整個文本。文本是命令式的,但并不回避在適當的時候盡早討論對象。關于用戶定義類和面向對象編程的討論將在后面的課文中出現,當學生有更多的背景知識和概念時,可以激發他們的學習動機。章節包括問題解決技術和經典算法的介紹,問題解決和編程以及將核心技能應用于應用程序開發的方法。本版本還包括在更廣泛的領域中提供的示例和實踐問題。另一章的案例研究是獨家威利E-Text,為學生提供實際應用的概念和工具,涵蓋在章節中。

付費5元查看完整內容

機器學習的核心是有效地識別數據中的模式和關系。許多任務,例如查找詞匯之間的關聯以便您能夠做出準確的搜索建議,或者在社交網絡中定位具有相似興趣的個人,很自然地以圖Graph的形式表達出來。圖驅動機器學習教你如何使用基于圖形的算法和數據組織策略來開發高級的機器學習應用程序。

對這項技術

對于任何涉及到大型數據集中的模式匹配的任務,基于圖的機器學習都是一個非常強大的工具。應用程序包括安全問題,如識別欺詐或檢測網絡入侵,應用程序領域,如社交網絡或自然語言處理,以及更好的用戶體驗,通過準確的推薦和智能搜索。通過將數據組織和分析為圖形,您的應用程序可以更流暢地使用以圖形為中心的算法(如最近鄰算法或頁面排名算法),在這些算法中,快速識別和利用相關關系非常重要。現代圖形數據存儲(如Neo4j或Amazon Neptune)是支持圖形機器學習的現成工具。

關于這本書

圖驅動機器學習向您介紹圖技術概念,強調圖在機器學習和大數據平臺中的作用。您將深入了解各種技術,包括數據源建模、算法設計、鏈接分析、分類和集群。在掌握核心概念之后,您將探索三個端到端項目,它們將演示體系結構、最佳設計實踐、優化方法和常見缺陷。作者亞歷山德羅·內格羅在構建基于圖形的機器學習系統方面的豐富經驗在每一章中都有所體現,你可以從他與真實客戶合作的實例和具體場景中學習!

里面有什么

  • 機器學習項目的生命周期
  • 三端到端應用程序
  • 大數據平臺中的圖形
  • 數據源建模
  • 自然語言處理、推薦和相關搜索
  • 優化方法
付費5元查看完整內容

【導讀】圖數據處理是一個長期存在的研究課題,近年來又被深度學習領域廣泛關注。相關研究在數量和廣度上飛速增長,但這也導致了知識系統化的缺失和對早期文獻關注的缺失。《A Gentle Introduction to Deep Learning for Graphs》是圖深度學習領域的教程導論,它傾向于對主流概念和架構的一致和漸進的介紹,而不是對最新文獻的闡述。

教程在介紹概念和想法時采用了自上而下的方法并保留了清晰的歷史觀點,為此,導論在第2節中提供了圖表示學習的泛化形式,將圖表示學習泛化為一種基于局部和迭代的結構化信息處理過程。同時,介紹了架構路線圖,整個導論也是圍繞該路線圖進行開展的。導論聚焦于面向局部和迭代的信息處理過程,因為這些過程與神經網絡的體系更為一致。因此,導論會淡化那些基于圖譜理論的全局方法(假設有一個固定的鄰接矩陣)。

后續,導論介紹了可以用于組裝構建新奇和有效圖神經網絡模型的基本構建單元。導論還對圖深度學習中有意思的研究挑戰和應用進行了闡述,同時介紹了相關的方法。導論的內容大致如下:

  • 摘要

  • 簡介

  • 高階概覽

    • 數學符號

    • 動機

    • 路線圖

    • 局部關系和信息的迭代處理

    • 三種上下文傳播機制

  • 構建塊/單元

    • 鄰接聚合

    • 池化

    • 面向圖嵌入的節點聚合

    • 總結

  • 任務

    • 無監督學習

    • 有監督學習

    • 生成式學習

    • 總結

  • 其他方法和任務的總結

    • 圖譜方法

    • 隨機游走

    • 圖上的對抗訓練和攻擊

    • 圖序列生成模型

  • 開放挑戰和研究方法

    • 時間進化圖

    • 偏置方差權衡

    • 邊信息的明智用法

    • 超圖學習

  • 應用

    • 化學和藥物設計

    • 社交網絡

    • 自然語言處理

    • 安全

    • 時空預測

    • 推薦系統

  • 總結

付費5元查看完整內容

題目: Representation Learning on Graphs: Methods and Applications

摘要:

圖機器學習是一項重要且普遍存在的任務,其應用范圍從藥物設計到社交網絡中的友情推薦。這個領域的主要挑戰是找到一種表示或編碼圖形結構的方法,以便機器學習模型能夠輕松地利用它。傳統上,機器學習方法依賴于用戶定義的啟發法來提取對圖的結構信息進行編碼的特征(例如,度統計或內核函數)。然而,近年來,使用基于深度學習和非線性降維的技術,自動學習將圖結構編碼為低維嵌入的方法激增。在這里,我們提供了一個概念上的回顧,在這一領域的關鍵進展,圖表示學習,包括基于矩陣分解的方法,隨機漫步的算法和圖神經網絡。我們回顧了嵌入單個節點的方法以及嵌入整個(子)圖的方法。在此過程中,我們開發了一個統一的框架來描述這些最近的方法,并強調了一些重要的應用程序和未來工作的方向。

作者簡介:

William L. Hamilton是麥吉爾大學計算機科學的助理教授,也是加拿大魁北克Mila AI研究所的CIFAR AI主席。William L. Hamilton開發的機器學習模型可以對這個復雜的、相互聯系的世界進行推理。研究興趣集中在機器學習、網絡科學和自然語言處理的交叉領域,目前的重點是快速發展的圖表示學習和圖神經網絡。

Rex Ying是斯坦福大學計算機科學二年級的博士生,研究主要集中在開發應用于圖形結構數據的機器學習算法。曾致力于開發可擴展到網絡規模數據集的廣義圖卷積網絡,應用于推薦系統、異常檢測和生物學。

付費5元查看完整內容

題目: Attention Models in Graphs: A Survey

摘要: 圖結構數據自然地出現在許多不同的應用領域。通過將數據表示為圖形,我們可以捕獲實體(即節點)以及它們之間的關系(即邊)。許多有用的見解可以從圖形結構的數據中得到,這一點已被越來越多的關注于圖形挖掘的工作所證明。然而,在現實世界中,圖可以是大的-有許多復雜的模式-和噪聲,這可能會給有效的圖挖掘帶來問題。解決這一問題的一個有效方法是將“注意力”融入到圖挖掘解決方案中。注意機制允許一個方法關注圖中與任務相關的部分,幫助它做出更好的決策。在這項工作中,我們對圖形注意模型這一新興領域的文獻進行了全面而集中的調查。我們介紹了三個直觀的分類組現有的工作。它們基于問題設置(輸入和輸出類型)、使用的注意機制類型和任務(例如,圖形分類、鏈接預測等)。我們通過詳細的例子來激勵我們的分類法,并使用每種方法從一個獨特的角度來調查競爭方法。最后,我們強調了該領域的幾個挑戰,并討論了未來工作的前景。

作者簡介: Ryan A. Rossi,目前在Adobe Research工作,研究領域是機器學習;涉及社會和物理現象中的大型復雜關系(網絡/圖形)數據的理論、算法和應用。在普渡大學獲得了計算機科學博士和碩士學位。

Nesreen K. Ahmed,英特爾實驗室的高級研究員。她在普渡大學計算機科學系獲得博士學位,在普渡大學獲得統計學和計算機科學碩士學位。研究方向是機器學習和數據挖掘,涵蓋了大規模圖挖掘、統計機器學習的理論和算法,以及它們在社會和信息網絡中的應用。

付費5元查看完整內容

課程名稱: CS224W: Machine Learning with Graphs

課程簡介:

網絡是對復雜的社會、技術和生物系統建模的基本工具。結合在線社交網絡的出現和生物科學中大規模數據的可用性,本課程重點分析提供了幾個計算、算法和建模挑戰的大規模網絡。學生將學習機器學習技術和數據挖掘工具,通過研究其潛在的網絡結構和相互聯系,揭示對社會、技術和自然世界的洞察。

在本課程中,我們將介紹圖機器學習技術,包括以下主題:

  • 食品網絡和金融市場的穩固性和脆弱性;
  • 萬維網的算法;
  • 圖神經網絡與表示學習
  • 生物網絡功能模塊的識別
  • 疾病暴發檢測。

課程部分大綱:

  • 介紹:圖結構
  • 網絡的性質和隨機圖模型
    • 復習課:Snap.py和谷歌云教程
  • 網絡中的主題和結構角色
  • 網絡中的社區結構
    • 復習線性代數,概率論和證明技術
  • 譜聚類
  • 消息傳遞和節點分類
  • 圖表示學習
  • 圖神經網絡
  • 圖神經網絡:動手練習
  • 圖的深層生成模型
  • 鏈接分析:網頁排名
  • 網絡效應和級聯行為
  • 概率傳染和影響模型

講師介紹:

Jurij Leskovec是斯坦福大學計算機科學副教授,研究側重于分析和建模大型社區和信息網絡,作為跨社區、技術和自然世界現象的研究。他側重于網絡結構的統計建模、網絡演化、信息傳播、網絡影響和病毒。他所研究的問題是由大規模數據、網絡和其他在線媒體引發的,同樣從事文本挖掘和機器學習的應用。個人官網:

下載索引:鏈接:

付費5元查看完整內容

主題: Introduction to Machine Learning

課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。

邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。

Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。

Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等

付費5元查看完整內容
北京阿比特科技有限公司