亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Introduction to Graph Neural Networks

簡介:

在復雜的實際應用中,圖是有用的數據結構,例如對物理系統進行建模,學習分子指紋,控制交通網絡以及在社交網絡中推薦朋友。但是,這些任務需要處理包含元素之間的豐富關系信息且無法通過傳統深度學習模型(例如卷積神經網絡(CNN)或遞歸神經網絡(RNN))妥善處理的非歐氏圖數據。圖中的節點通常包含有用的特征信息,這些信息在大多數無監督的表示學習方法(例如,網絡嵌入方法)中無法很好地解決。提出了圖神經網絡(GNN)來結合特征信息和圖結構,以通過特征傳播和聚集學習更好的圖表示。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖形分析工具。本書全面介紹了圖神經網絡的基本概念,模型和應用。首先介紹了香草GNN模型。然后介紹了vanil la模型的幾種變體,例如圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。還包括不同圖類型的變體和高級訓練方法。對于GNN的應用,該書將min分為結構,非結構和其他場景,然后介紹了解決這些任務的幾種典型模型。最后,最后幾章提供了GNN的開放資源以及一些未來方向的展望。

深度學習在許多領域都取得了可喜的進展,例如計算機視覺和自然語言處理。這些任務中的數據通常以歐幾里得表示。但是,許多學習任務需要處理包含元素之間豐富的關系信息的非歐氏圖數據,例如建模物理系統,學習分子指紋,預測蛋白質界面等。圖神經網絡(GNN)是基于深度學習的方法,在圖域上運行。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖形分析方法。本書全面介紹了圖神經網絡的基本概念,模型和應用。它從數學模型和神經網絡的基礎開始。在第一章中,它對GNN的基本概念進行了介紹,目的是為讀者提供一個概覽。然后介紹了GNN的不同變體:圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。這些最差的結果是將通用的深度學習技術轉化為圖形,例如卷積神經網絡,遞歸神經網絡,注意力機制和跳過連接。此外,這本書介紹了GNN在結構場景(物理,化學,知識圖譜),非結構場景(圖像,文本)和其他場景(生成模型,組合優化)中的不同應用。最后,這本書列出了相關的數據集,開源平臺和GNN的實現。本書組織如下。在第1章中進行了概述之后,在第2章中介紹了數學和圖論的一些基本知識。在第3章中介紹了神經網絡的基礎,然后在第4章中簡要介紹了香草GNN。四種類型的模型分別在第5、6、7和8章中介紹。在第9章和第10章中介紹了不同圖類型和高級訓練方法的其他變體。然后在第11章中提出了幾種通用的GNN框架。第12、13和14章介紹了GNN在結構場景,非結構場景和其他場景中的應用。最后,我們在第15章提供了一些開放資源,并在第16章總結了這本書。

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

內容概要:

在復雜的實際應用中,圖是有用的數據結構,例如對物理系統進行建模,學習分子指紋,控制交通網絡以及在社交網絡中推薦朋友。但是,這些任務需要處理包含元素之間的豐富關系信息且無法通過傳統深度學習模型(例如卷積神經網絡(CNN)或遞歸神經網絡(RNN))妥善處理的非歐氏圖數據。圖中的節點通常包含有用的特征信息,這些信息在大多數無監督的表示學習方法(例如,網絡嵌入方法)中無法很好地解決。圖神經網絡(GNN)被提出來結合特征信息和圖結構,以通過特征傳播和聚集學習更好的圖表示。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖分析工具。

本書全面介紹了圖神經網絡的基本概念,模型和應用。首先介紹了vanilla GNN模型。然后介紹了vanilla模型的幾種變體,例如圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。還包括不同圖類型的變體和高級訓練方法。對于GNN的應用,該書分為結構,非結構和其他場景,然后介紹了解決這些任務的幾種典型模型。最后,最后幾章提供了GNN的開放資源以及一些未來方向的展望。

本書組織如下。在第1章中進行了概述之后,在第2章中介紹了數學和圖論的一些基本知識。在第3章中介紹了神經網絡的基礎,然后在第4章中簡要介紹了香草GNN。四種類型的模型分別在第5、6、7和8章中介紹。在第9章和第10章中介紹了不同圖類型和高級訓練方法的其他變體。然后在第11章中提出了幾種通用的GNN框架。第12、13和14章介紹了GNN在結構場景,非結構場景和其他場景中的應用。最后,我們在第15章提供了一些開放資源,并在第16章總結了這本書。

作者:

劉知遠,清華大學計算機系自然語言處理實驗室, 副教授。2006年獲得清華大學計算機科學與技術系學士學位,2011年獲得博士學位。他的研究興趣是自然語言處理和社會計算。在IJCAI、AAAI、ACL、EMNLP等國際期刊和會議上發表論文60余篇。

//nlp.csai.tsinghua.edu.cn/~lzy/index_cn.html

周界是清華大學計算機科學與技術系碩士二年級學生。他于2016年獲得清華大學學士學位。他的研究興趣包括圖形神經網絡和自然語言處理。

圖書目錄:

  • 前言
  • 致謝
  • 第一章: 引言
  • 第二章: 數學和圖的基礎知識
  • 第三章: 神經網絡的基礎知識
  • 第四章: Vanilla 圖神經網絡
  • 第五章: 圖卷積網絡
  • 第六章: 圖遞歸網絡
  • 第七章: 圖注意力網絡
  • 第八章 : 圖殘差網絡
  • 第九章: 同圖形型的變體
  • 第十章: 高級訓練方法的變體
  • 第十一章: 一般框架
  • 第十二章: 應用——結構場景
  • 第十三章: 應用——非結構性場景
  • 第十四章: 應用——其他場景
  • 第十五章: 開放資源
  • 第十六章: 結論
  • 參考書目
付費5元查看完整內容

芬蘭阿爾托大學CSE4890深度學習課程第7講:圖神經網絡,由Alexander Ilin主講,全面詳細地介紹了GNN的背景動機、GCN、循環關系網絡、通用網絡。

付費5元查看完整內容

機器學習的核心是有效地識別數據中的模式和關系。許多任務,例如查找詞匯之間的關聯以便您能夠做出準確的搜索建議,或者在社交網絡中定位具有相似興趣的個人,很自然地以圖Graph的形式表達出來。圖驅動機器學習教你如何使用基于圖形的算法和數據組織策略來開發高級的機器學習應用程序。

對這項技術

對于任何涉及到大型數據集中的模式匹配的任務,基于圖的機器學習都是一個非常強大的工具。應用程序包括安全問題,如識別欺詐或檢測網絡入侵,應用程序領域,如社交網絡或自然語言處理,以及更好的用戶體驗,通過準確的推薦和智能搜索。通過將數據組織和分析為圖形,您的應用程序可以更流暢地使用以圖形為中心的算法(如最近鄰算法或頁面排名算法),在這些算法中,快速識別和利用相關關系非常重要。現代圖形數據存儲(如Neo4j或Amazon Neptune)是支持圖形機器學習的現成工具。

關于這本書

圖驅動機器學習向您介紹圖技術概念,強調圖在機器學習和大數據平臺中的作用。您將深入了解各種技術,包括數據源建模、算法設計、鏈接分析、分類和集群。在掌握核心概念之后,您將探索三個端到端項目,它們將演示體系結構、最佳設計實踐、優化方法和常見缺陷。作者亞歷山德羅·內格羅在構建基于圖形的機器學習系統方面的豐富經驗在每一章中都有所體現,你可以從他與真實客戶合作的實例和具體場景中學習!

里面有什么

  • 機器學習項目的生命周期
  • 三端到端應用程序
  • 大數據平臺中的圖形
  • 數據源建模
  • 自然語言處理、推薦和相關搜索
  • 優化方法
付費5元查看完整內容

題目: Graph Neural Networks: A Review of Methods and Applications

摘要: 許多學習任務都需要處理包含元素間豐富關系信息的圖形數據。建模物理系統、學習分子指紋、預測蛋白質界面和疾病分類需要一個模型從圖形輸入中學習。在文本、圖像等非結構化數據的學習等領域,對句子的依存樹、圖像的場景圖等提取的結構進行推理是一個重要的研究課題,同時也需要建立圖形推理模型。圖神經網絡(GNNs)是通過圖節點之間的信息傳遞來獲取圖的依賴性的連接模型。與標準神經網絡不同,圖神經網絡保留了一種狀態,這種狀態可以以任意深度表示來自其鄰域的信息。雖然原始GNNs已經被發現很難訓練到固定的點,但是最近在網絡結構、優化技術和并行計算方面的進展已經使它能夠成功地學習。近年來,基于圖形卷積網絡(GCN)、圖形注意網絡(GAT)、門控圖形神經網絡(GGNN)等圖形神經網絡變體的系統在上述許多任務上都表現出了突破性的性能。在這項調查中,我們提供了一個詳細的檢討現有的圖形神經網絡模型,系統分類的應用,并提出了四個開放的問題,為今后的研究。

作者簡介: Jie Zhou,CS的研究生,從事系統研究,主要研究計算機安全。他畢業于廈門大學,在羅切斯特大學獲得碩士學位及博士學位。

Zhiyuan Liu,清華大學計算機系NLP實驗室副教授。

付費5元查看完整內容

題目: Graph Neural Networks:A Review of Methods and Applications

簡介: 許多學習任務需要處理圖形數據,該圖形數據包含元素之間的關系信息。對物理系統進行建模,學習分子指紋,預測蛋白質界面以及對疾病進行分類,都需要從圖輸入中學習模型。在諸如從文本和圖像之類的非結構數據中學習的其他領域中,對提取結構的推理,例如句子的依存關系樹和圖像的場景圖,是一個重要的研究課題,它也需要圖推理模型。圖神經網絡(GNN)是連接器模型,可通過在圖的節點之間傳遞消息來捕獲圖的依賴性。與標準神經網絡不同,圖神經網絡保留一種狀態,該狀態可以表示來自其鄰域的任意深度的信息。盡管已經發現難以訓練原始圖神經網絡來固定點,但是網絡體系結構,優化技術和并行計算的最新進展已使他們能夠成功學習。近年來,基于圖卷積網絡(GCN)和門控圖神經網絡(GGNN)的系統已經在上述許多任務上展示了突破性的性能。在本綜述中,我們對現有的圖神經網絡模型進行了詳細的回顧,對應用程序進行了系統分類,并提出了四個未解決的問題,供以后研究。

作者簡介: 周杰,教授,清華大學自動化系黨委書記,教授,博士生導師。

付費5元查看完整內容
北京阿比特科技有限公司