亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

內容概要:

在復雜的實際應用中,圖是有用的數據結構,例如對物理系統進行建模,學習分子指紋,控制交通網絡以及在社交網絡中推薦朋友。但是,這些任務需要處理包含元素之間的豐富關系信息且無法通過傳統深度學習模型(例如卷積神經網絡(CNN)或遞歸神經網絡(RNN))妥善處理的非歐氏圖數據。圖中的節點通常包含有用的特征信息,這些信息在大多數無監督的表示學習方法(例如,網絡嵌入方法)中無法很好地解決。圖神經網絡(GNN)被提出來結合特征信息和圖結構,以通過特征傳播和聚集學習更好的圖表示。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖分析工具。

本書全面介紹了圖神經網絡的基本概念,模型和應用。首先介紹了vanilla GNN模型。然后介紹了vanilla模型的幾種變體,例如圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。還包括不同圖類型的變體和高級訓練方法。對于GNN的應用,該書分為結構,非結構和其他場景,然后介紹了解決這些任務的幾種典型模型。最后,最后幾章提供了GNN的開放資源以及一些未來方向的展望。

本書組織如下。在第1章中進行了概述之后,在第2章中介紹了數學和圖論的一些基本知識。在第3章中介紹了神經網絡的基礎,然后在第4章中簡要介紹了香草GNN。四種類型的模型分別在第5、6、7和8章中介紹。在第9章和第10章中介紹了不同圖類型和高級訓練方法的其他變體。然后在第11章中提出了幾種通用的GNN框架。第12、13和14章介紹了GNN在結構場景,非結構場景和其他場景中的應用。最后,我們在第15章提供了一些開放資源,并在第16章總結了這本書。

作者:

劉知遠,清華大學計算機系自然語言處理實驗室, 副教授。2006年獲得清華大學計算機科學與技術系學士學位,2011年獲得博士學位。他的研究興趣是自然語言處理和社會計算。在IJCAI、AAAI、ACL、EMNLP等國際期刊和會議上發表論文60余篇。

//nlp.csai.tsinghua.edu.cn/~lzy/index_cn.html

周界是清華大學計算機科學與技術系碩士二年級學生。他于2016年獲得清華大學學士學位。他的研究興趣包括圖形神經網絡和自然語言處理。

圖書目錄:

  • 前言
  • 致謝
  • 第一章: 引言
  • 第二章: 數學和圖的基礎知識
  • 第三章: 神經網絡的基礎知識
  • 第四章: Vanilla 圖神經網絡
  • 第五章: 圖卷積網絡
  • 第六章: 圖遞歸網絡
  • 第七章: 圖注意力網絡
  • 第八章 : 圖殘差網絡
  • 第九章: 同圖形型的變體
  • 第十章: 高級訓練方法的變體
  • 第十一章: 一般框架
  • 第十二章: 應用——結構場景
  • 第十三章: 應用——非結構性場景
  • 第十四章: 應用——其他場景
  • 第十五章: 開放資源
  • 第十六章: 結論
  • 參考書目
付費5元查看完整內容

相關內容

由湯志遠、李藍天、王東組織撰寫的《語音識別基本法》一書近日將由電子工業出版社出版。CSLT公眾號“清語賦”將順序刊載該書的全部章節。該書以語音識別為基礎任務,介紹了語音識別的 基礎原理、主流方法、Kaldi的實現,同時給出若干深入探討的話題,包括去噪,關鍵詞檢出、領域自適應等。最后,該書還對語音識別的相關任務做了總結性介紹,包括說話人識別、語種識別、 情緒識別、語音合成等。該書面向對語音信號處理技術感興趣的入門級讀者。通過該書,讀者不僅可以掌握語音識別的基礎內容,而且可以了解語音信息處理的相關領域進展,取得實踐知識。

地址:

//cslt.riit.tsinghua.edu.cn/news.php?title=News-2020-07-10-1

付費5元查看完整內容

語義表示是自然語言處理的基礎,我們需要將原始文本數據中的有用信息轉換為計算機能夠理解的語義表示,才能實現各種自然語言處理應用。表示學習旨在從大規模數據中自動學習數據的語義特征表示,并支持機器學習進一步用于數據訓練和預測。以深度學習為代表的表示學習技術,能夠靈活地建立對大規模文本、音頻、圖像、視頻等無結構數據的語義表示,顯著提升語音識別、圖像處理和自然語言處理的性能,近年來引發了人工智能的新浪潮。本書是第一本完整介紹自然語言處理表示學習技術的著作。書中全面介紹了表示學習技術在自然語言處理領域的最新進展,對相關理論、方法和應用進行了深入介紹,并展望了未來的重要研究方向。

本書全面介紹了自然語言處理表示學習技術的理論、方法和應用,內容包括三大部分:第一部分介紹了單詞、短語、句子和文檔等不同粒度語言單元的表示學習技術;第二部分介紹了與自然語言密切相關的世界知識、語言知識、復雜網絡和跨模態數據的表示學習技術;第三部分整理了相關開放資源與工具,并探討了面向自然語言處理的表示學習技術面臨的重要挑戰和未來研究方向。本書對于自然語言處理和人工智能基礎研究具有一定的參考意義,既適合專業人士了解自然語言處理和表示學習的前沿熱點,也適合機器學習、信息檢索、數據挖掘、社會網絡分析、語義Web等其他相關領域學者和學生作為參考讀物。

付費5元查看完整內容

題目: Introduction to Graph Neural Networks

簡介:

在復雜的實際應用中,圖是有用的數據結構,例如對物理系統進行建模,學習分子指紋,控制交通網絡以及在社交網絡中推薦朋友。但是,這些任務需要處理包含元素之間的豐富關系信息且無法通過傳統深度學習模型(例如卷積神經網絡(CNN)或遞歸神經網絡(RNN))妥善處理的非歐氏圖數據。圖中的節點通常包含有用的特征信息,這些信息在大多數無監督的表示學習方法(例如,網絡嵌入方法)中無法很好地解決。提出了圖神經網絡(GNN)來結合特征信息和圖結構,以通過特征傳播和聚集學習更好的圖表示。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖形分析工具。本書全面介紹了圖神經網絡的基本概念,模型和應用。首先介紹了香草GNN模型。然后介紹了vanil la模型的幾種變體,例如圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。還包括不同圖類型的變體和高級訓練方法。對于GNN的應用,該書將min分為結構,非結構和其他場景,然后介紹了解決這些任務的幾種典型模型。最后,最后幾章提供了GNN的開放資源以及一些未來方向的展望。

深度學習在許多領域都取得了可喜的進展,例如計算機視覺和自然語言處理。這些任務中的數據通常以歐幾里得表示。但是,許多學習任務需要處理包含元素之間豐富的關系信息的非歐氏圖數據,例如建模物理系統,學習分子指紋,預測蛋白質界面等。圖神經網絡(GNN)是基于深度學習的方法,在圖域上運行。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖形分析方法。本書全面介紹了圖神經網絡的基本概念,模型和應用。它從數學模型和神經網絡的基礎開始。在第一章中,它對GNN的基本概念進行了介紹,目的是為讀者提供一個概覽。然后介紹了GNN的不同變體:圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。這些最差的結果是將通用的深度學習技術轉化為圖形,例如卷積神經網絡,遞歸神經網絡,注意力機制和跳過連接。此外,這本書介紹了GNN在結構場景(物理,化學,知識圖譜),非結構場景(圖像,文本)和其他場景(生成模型,組合優化)中的不同應用。最后,這本書列出了相關的數據集,開源平臺和GNN的實現。本書組織如下。在第1章中進行了概述之后,在第2章中介紹了數學和圖論的一些基本知識。在第3章中介紹了神經網絡的基礎,然后在第4章中簡要介紹了香草GNN。四種類型的模型分別在第5、6、7和8章中介紹。在第9章和第10章中介紹了不同圖類型和高級訓練方法的其他變體。然后在第11章中提出了幾種通用的GNN框架。第12、13和14章介紹了GNN在結構場景,非結構場景和其他場景中的應用。最后,我們在第15章提供了一些開放資源,并在第16章總結了這本書。

付費5元查看完整內容

題目: Graph Neural Networks:A Review of Methods and Applications

簡介: 許多學習任務需要處理圖形數據,該圖形數據包含元素之間的關系信息。對物理系統進行建模,學習分子指紋,預測蛋白質界面以及對疾病進行分類,都需要從圖輸入中學習模型。在諸如從文本和圖像之類的非結構數據中學習的其他領域中,對提取結構的推理,例如句子的依存關系樹和圖像的場景圖,是一個重要的研究課題,它也需要圖推理模型。圖神經網絡(GNN)是連接器模型,可通過在圖的節點之間傳遞消息來捕獲圖的依賴性。與標準神經網絡不同,圖神經網絡保留一種狀態,該狀態可以表示來自其鄰域的任意深度的信息。盡管已經發現難以訓練原始圖神經網絡來固定點,但是網絡體系結構,優化技術和并行計算的最新進展已使他們能夠成功學習。近年來,基于圖卷積網絡(GCN)和門控圖神經網絡(GGNN)的系統已經在上述許多任務上展示了突破性的性能。在本綜述中,我們對現有的圖神經網絡模型進行了詳細的回顧,對應用程序進行了系統分類,并提出了四個未解決的問題,供以后研究。

作者簡介: 周杰,教授,清華大學自動化系黨委書記,教授,博士生導師。

付費5元查看完整內容

內容摘要: 個性化推薦在當前消費場景中起著至關重要的作用。本教程主要包括兩個部分:基礎和趨勢。在第一部分中,我們將介紹個性化推薦系統的基本問題,包括用戶意圖和需求,挑戰性問題和最新技術。在第二部分中,我們將重點關注相關領域中的新趨勢主題,包括(但不限于):用戶滿意度和評估方式,可解釋的推薦,基于知識圖譜和推論的推薦,跨域異構推薦以及公平性。最后,我們將討論未來的發展方向。

作者簡介: 張敏博士是清華大學計算機科學與技術系的終身教授,研究方向為Web搜索和推薦以及用戶建模。她是CS部門智能技術與系統實驗室的副主任,清華-MSRA媒體與搜索實驗室的執行主任。她還擔任過ACM TOIS副編輯。她已發表了100多篇論文,引用次數超過3500, H-index得分為32。她在2016年獲得了北京科學技術獎(一等獎),并在2018年獲得了中國大學計算機科學優秀教師獎。她還擁有12項專利。并且她與國際和國內企業進行了很多合作。

付費5元查看完整內容

論壇嘉賓:楊成 北京郵電大學 助理教授

報告主題:圖神經網絡在自然語言處理領域的前沿應用

報告摘要:很多真實世界的應用場景需要處理包含著元素間豐富關系信息的圖形式的數據。在例如物理系統建模、化學分子功能預測等領域中,數據都擁有顯式的圖結構;而在另一些例如文本的非結構數據中,如何從數據中抽取推理并利用如句法樹等結構信息,也是相關領域中重要的研究方向。圖神經網絡可以通過節點間的信息傳遞(message passing)有效地捕捉結構信息。自該概念提出以來,圖神經網絡技術已經在自然語言處理、數據挖掘等多個領域得到了廣泛的應用。本報告將重點介紹圖神經網絡技術在自然語言處理領域的前沿應用。

嘉賓簡介:楊成,博士,北京郵電大學計算機學院助理教授,2019年7月畢業于清華大學計算機科學與技術系,從事自然語言處理與社會計算相關方向的研究,博士期間在國內外頂級期刊會議上發表多篇論文,Google Scholar累計獲得引用近500次,并擔任國內外頂級會議包括ACL、EMNLP、SMP等在內的程序委員會成員和期刊的審稿人。

付費5元查看完整內容
北京阿比特科技有限公司