語義表示是自然語言處理的基礎,我們需要將原始文本數據中的有用信息轉換為計算機能夠理解的語義表示,才能實現各種自然語言處理應用。表示學習旨在從大規模數據中自動學習數據的語義特征表示,并支持機器學習進一步用于數據訓練和預測。以深度學習為代表的表示學習技術,能夠靈活地建立對大規模文本、音頻、圖像、視頻等無結構數據的語義表示,顯著提升語音識別、圖像處理和自然語言處理的性能,近年來引發了人工智能的新浪潮。本書是第一本完整介紹自然語言處理表示學習技術的著作。書中全面介紹了表示學習技術在自然語言處理領域的最新進展,對相關理論、方法和應用進行了深入介紹,并展望了未來的重要研究方向。
本書全面介紹了自然語言處理表示學習技術的理論、方法和應用,內容包括三大部分:第一部分介紹了單詞、短語、句子和文檔等不同粒度語言單元的表示學習技術;第二部分介紹了與自然語言密切相關的世界知識、語言知識、復雜網絡和跨模態數據的表示學習技術;第三部分整理了相關開放資源與工具,并探討了面向自然語言處理的表示學習技術面臨的重要挑戰和未來研究方向。本書對于自然語言處理和人工智能基礎研究具有一定的參考意義,既適合專業人士了解自然語言處理和表示學習的前沿熱點,也適合機器學習、信息檢索、數據挖掘、社會網絡分析、語義Web等其他相關領域學者和學生作為參考讀物。
表示學習(representation learning), 又稱表征學習,是指將輸入數據轉化成 適用于機器學習形式的過程。通常地,機器學習的性能依賴于對數據表示的選 擇,一個好的表示可以使得模型對輸入數據進行更好的理解。近年來,神經網絡 的興起,使得我們可以自動地對輸入數據進行特征抽取。這極大推動了表示學習 的發展,并給我們帶來了進一步探究的可能性。
一般地,表示學習的研究可以按照不同角度進行劃分:從學習方式上,可以 分為有監督學習和無監督學習;從輸入數據模態上,可以分為文本表示、圖像表 示以及語音表示;從共享獨立性上,可以分為共享表示和私有表示。在自然語言 處理中,使用深度學習技術(即深度神經網絡)對文本進行表示學習已經成為一 個很有價值的研究方向。本文工作圍繞著以下問題展開:1)對于不同粒度的文 本(詞語、句子、句對),如何設計合理的結構,使得模型可以學習到適合最終任 務的表示?深度學習的到來使得自然語言處理中的研究工作由原來的特征工程 (feature engineering) 過渡到了現在的結構工程 (architecture engineering) ,而對于 文本的表示學習,首先要解決的最基本問題就是尋找合適的歸納偏置 (inductive bias),使得模型可以更好地對輸入文本進行編碼。而本文分別針對不同粒度的文 本信號,進行相應的網絡結構探索,希望找到更適合下游任務的結構偏置。2)如 何進行針對性的遷移學習?有針對性地進行遷移是指我們要對遷移的知識“按 需分配”,這就要求我們學習的知識應該具備可遷移性,此外,我們還要對已有 的知識進行可理解分析,從而可以分離我們真正需要的知識,最終實現知識的定 向遷移。對于以上兩個亟待解決的問題,本文通過兩個方面,九個章節進行遞進 式探討,其貢獻總結如下:
一方面,對于不同粒度文本的表示學習,本文分別探索了最適合下游任務的 歸納偏置,并且利用這些歸納偏置設計新的模型,這些模型在主流的數據集上都 取得了當時最好的效果。
關鍵詞:深度學習;語義表示學習;自然語言處理;歸納偏置;知識遷移
由湯志遠、李藍天、王東組織撰寫的《語音識別基本法》一書近日將由電子工業出版社出版。CSLT公眾號“清語賦”將順序刊載該書的全部章節。該書以語音識別為基礎任務,介紹了語音識別的 基礎原理、主流方法、Kaldi的實現,同時給出若干深入探討的話題,包括去噪,關鍵詞檢出、領域自適應等。最后,該書還對語音識別的相關任務做了總結性介紹,包括說話人識別、語種識別、 情緒識別、語音合成等。該書面向對語音信號處理技術感興趣的入門級讀者。通過該書,讀者不僅可以掌握語音識別的基礎內容,而且可以了解語音信息處理的相關領域進展,取得實踐知識。
地址:
//cslt.riit.tsinghua.edu.cn/news.php?title=News-2020-07-10-1
內容概要:
在復雜的實際應用中,圖是有用的數據結構,例如對物理系統進行建模,學習分子指紋,控制交通網絡以及在社交網絡中推薦朋友。但是,這些任務需要處理包含元素之間的豐富關系信息且無法通過傳統深度學習模型(例如卷積神經網絡(CNN)或遞歸神經網絡(RNN))妥善處理的非歐氏圖數據。圖中的節點通常包含有用的特征信息,這些信息在大多數無監督的表示學習方法(例如,網絡嵌入方法)中無法很好地解決。圖神經網絡(GNN)被提出來結合特征信息和圖結構,以通過特征傳播和聚集學習更好的圖表示。由于其令人信服的性能和高解釋性,GNN最近已成為一種廣泛應用的圖分析工具。
本書全面介紹了圖神經網絡的基本概念,模型和應用。首先介紹了vanilla GNN模型。然后介紹了vanilla模型的幾種變體,例如圖卷積網絡,圖遞歸網絡,圖注意力網絡,圖殘差網絡和一些通用框架。還包括不同圖類型的變體和高級訓練方法。對于GNN的應用,該書分為結構,非結構和其他場景,然后介紹了解決這些任務的幾種典型模型。最后,最后幾章提供了GNN的開放資源以及一些未來方向的展望。
本書組織如下。在第1章中進行了概述之后,在第2章中介紹了數學和圖論的一些基本知識。在第3章中介紹了神經網絡的基礎,然后在第4章中簡要介紹了香草GNN。四種類型的模型分別在第5、6、7和8章中介紹。在第9章和第10章中介紹了不同圖類型和高級訓練方法的其他變體。然后在第11章中提出了幾種通用的GNN框架。第12、13和14章介紹了GNN在結構場景,非結構場景和其他場景中的應用。最后,我們在第15章提供了一些開放資源,并在第16章總結了這本書。
作者:
劉知遠,清華大學計算機系自然語言處理實驗室, 副教授。2006年獲得清華大學計算機科學與技術系學士學位,2011年獲得博士學位。他的研究興趣是自然語言處理和社會計算。在IJCAI、AAAI、ACL、EMNLP等國際期刊和會議上發表論文60余篇。
//nlp.csai.tsinghua.edu.cn/~lzy/index_cn.html
周界是清華大學計算機科學與技術系碩士二年級學生。他于2016年獲得清華大學學士學位。他的研究興趣包括圖形神經網絡和自然語言處理。
圖書目錄:
【導讀】這一份最新216頁的ppt概述《深度學習自然語言處理》,包括神經網絡基礎,詞向量表示,序列句子表示,分類標注、生成句子,預訓練。
題目: Deep Representation Learning in Speech Processing: Challenges, Recent Advances, and Future Trends
簡介: 傳統上,語音處理研究將設計人工工程聲學特征(特征工程)的任務與設計有效的機器學習(ML)模型以做出預測和分類決策的任務分離為一個獨立的問題。這種方法有兩個主要缺點:首先,手工進行的特征工程很麻煩并且需要人類知識。其次,設計的功能可能不是最適合當前目標的。這引發了語音社區中采用表示表達學習技術的最新趨勢,該趨勢可以自動學習輸入信號的中間表示,從而更好地適應手頭的任務,從而提高性能。表示學習的重要性隨著深度學習(DL)的發展而增加,在深度學習中,表示學習更有用,對人類知識的依賴性更低,這有助于分類,預測等任務。本文的主要貢獻在于:通過將跨三個不同研究領域(包括自動語音識別(ASR),說話者識別(SR)和說話者情緒識別(SER))的分散研究匯總在一起,對語音表示學習的不同技術進行了最新和全面的調查。最近針對ASR,SR和SER進行了語音復習,但是,這些復習都沒有集中于從語音中學習表示法,這是我們調查旨在彌補的差距。
報告簡介: 自然語言處理是計算機科學領域與人工智能領域中的一個重要方向。它研究能實現人與計算機之間用自然語言進行有效通信的各種理論和方法。自然語言處理是一門融語言學、計算機科學、數學于一體的科學。因此,這一領域的研究將涉及自然語言,即人們日常使用的語言,所以它與語言學的研究有著密切的聯系,但又有重要的區別。如何用好自然語言處理,讓機器明白文字,讀懂文字,自言語言處理已經應用在不同的領域,如推薦系統、醫療問答、機器翻譯等。
嘉賓介紹: 劉知遠,清華大學計算機系副教授、博士生導師。主要研究方向為表示學習、知識圖譜和社會計算。2011年獲得清華大學博士學位,已在ACL、IJCAI、AAAI等人工智能領域的著名國際期刊和會議發表相關論文60余篇,Google Scholar統計引用超過2700次。承擔多項國家自然科學基金。曾獲清華大學優秀博士學位論文、中國人工智能學會優秀博士學位論文、清華大學優秀博士后、中文信息學會青年創新獎,入選中國科學青年人才托舉工程、CCF-Intel青年學者提升計劃。擔任中文信息學會青年工作委員會執委、副主任,中文信息學會社會媒體處理專委會委員、秘書,SCI期刊Frontiers of Computer Science青年編委,ACL、COLING、IJCNLP領域主席。