亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

今天的計算機視覺擅長于識別現實世界的限定部分:我們的模型似乎能在基準數據集中準確地檢測出像貓、汽車或椅子這樣的物體。然而,部署模型要求它們在開放世界中工作,開放世界包括各種設置中的任意對象。目前的方法在兩個方面都有困難:他們只認識到少數的類別,并且在不同的訓練分布的環境中切換。解決這些挑戰的模型可以作為下游應用的基本構建模塊,包括識別操作、操作對象和繞過障礙進行導航。本論文提出了我們在建立魯棒檢測和跟蹤目標模型的工作,特別是有很少或甚至沒有訓練的樣例。首先,我們將探索傳統模型如何泛化到現實世界,傳統模型只識別一小部分對象類。我們表明,目前的方法是極其敏感的:即使是輸入圖像或測試分布的細微變化,都可能導致精度下降。我們的系統評估顯示,模型——即使是那些訓練很好的對對抗或合成損壞具有魯棒性的模型——經常正確地分類視頻的一幀,但在相鄰的感知相似的幀上卻失敗了。類似的現象甚至適用于由數據集之間的自然變化引起的微小分布變化。最后,我們提出了一種解決對象外觀泛化的極端形式的方法:檢測完全遮擋的對象。接下來,我們探索歸納到大的或無限的詞匯,其中包含罕見的和從未見過的類。由于當前的數據集很大程度上局限于一個小的、封閉的對象集合,我們首先提出了一個大型詞匯基準來衡量檢測和跟蹤的進展。我們展示了當前的評估不足以滿足大型詞匯量基準測試,并提供了適當評估此設置中的進度的替代指標。最后,我們提出了利用封閉世界識別的進展來為任何對象建立精確、通用的檢測器和跟蹤器的方法。

//www.ri.cmu.edu/publications/open-world-object-detection-and-tracking/

付費5元查看完整內容

相關內容

在過去的幾年中,深度學習和醫學的交叉領域取得了快速的發展,特別是在醫學圖像的解譯方面。在本文中,我描述了三個關鍵方向,為醫學圖像解釋的深度學習技術的發展提出了挑戰和機遇。首先,我討論了專家級醫學圖像解譯算法的發展,重點是用于低標記醫學數據設置的遷移學習和自監督學習算法。其次,我討論了高質量數據集的設計和管理以及它們在推進算法發展中的作用,重點是使用有限的手動注釋的高質量標記。第三,我討論了真實世界的評估醫學圖像算法的研究,系統地分析了在臨床相關分布變化下的性能。總之,這篇論文總結了關鍵貢獻和見解,在這些方向與關鍵應用跨醫學專業。

//searchworks.stanford.edu/view/13876519

付費5元查看完整內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容

賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。

在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。

總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。

//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28

付費5元查看完整內容

【導讀】牛津大學的博士生Oana-Maria Camburu撰寫了畢業論文《解釋神經網絡 (Explaining Deep Neural Networks)》,系統性介紹了深度神經網絡可解釋性方面的工作,值得關注。

作者介紹:

Oana-Maria Camburu,來自羅馬尼亞,目前是牛津大學的博士生,主修機器學習、人工智能等方向。

Explaining Deep Neural Networks

深度神經網絡在計算機視覺、自然語言處理和語音識別等不同領域取得了革命性的成功,因此越來越受歡迎。然而,這些模型的決策過程通常是無法向用戶解釋的。在各種領域,如醫療保健、金融或法律,了解人工智能系統所做決策背后的原因至關重要。因此,最近研究了幾個解釋神經模型的方向。

在這篇論文中,我研究了解釋深層神經網絡的兩個主要方向。第一個方向由基于特征的事后解釋方法組成,也就是說,這些方法旨在解釋一個已經訓練過的固定模型(事后解釋),并提供輸入特征方面的解釋,例如文本標記和圖像的超級像素(基于特征的)。第二個方向由生成自然語言解釋的自解釋神經模型組成,也就是說,模型有一個內置模塊,為模型的預測生成解釋。在這些方面的貢獻如下:

  • 首先,我揭示了僅使用輸入特征來解釋即使是微不足道的模型也存在一定的困難。我表明,盡管有明顯的隱含假設,即解釋方法應該尋找一種特定的基于真實值特征的解釋,但對于預測通常有不止一種這樣的解釋。我還展示了兩類流行的解釋方法,它們針對的是不同類型的事實基礎解釋,但沒有明確地提及它。此外,我還指出,有時這兩種解釋都不足以提供一個實例上決策過程的完整視圖。

  • 其次,我還介紹了一個框架,用于自動驗證基于特征的事后解釋方法對模型的決策過程的準確性。這個框架依賴于一種特定類型的模型的使用,這種模型有望提供對其決策過程的洞察。我分析了這種方法的潛在局限性,并介紹了減輕這些局限性的方法。引入的驗證框架是通用的,可以在不同的任務和域上實例化,以提供現成的完整性測試,這些測試可用于測試基于特性的后特殊解釋方法。我在一個情緒分析任務上實例化了這個框架,并提供了完備性測試s1,在此基礎上我展示了三種流行的解釋方法的性能。

  • 第三,為了探索為預測生成自然語言解釋的自解釋神經模型的發展方向,我在有影響力的斯坦福自然語言推斷(SNLI)數據集之上收集了一個巨大的數據集,數據集約為570K人類編寫的自然語言解釋。我把這個解釋擴充數據集稱為e-SNLI。我做了一系列的實驗來研究神經模型在測試時產生正確的自然語言解釋的能力,以及在訓練時提供自然語言解釋的好處。

  • 第四,我指出,目前那些為自己的預測生成自然語言解釋的自解釋模型,可能會產生不一致的解釋,比如“圖像中有一只狗。”以及“同一幅圖片中沒有狗”。不一致的解釋要么表明解釋沒有忠實地描述模型的決策過程,要么表明模型學習了一個有缺陷的決策過程。我將介紹一個簡單而有效的對抗性框架,用于在生成不一致的自然語言解釋時檢查模型的完整性。此外,作為框架的一部分,我解決了使用精確目標序列的對抗性攻擊的問題,這是一個以前在序列到序列攻擊中沒有解決的場景,它對于自然語言處理中的其他任務很有用。我將這個框架應用到e-SNLI上的一個最新的神經模型上,并表明這個模型會產生大量的不一致性。

這項工作為獲得更穩健的神經模型以及對預測的可靠解釋鋪平了道路。

地址: //arxiv.org/abs/2010.01496

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在連續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。****

付費5元查看完整內容

機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。

本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習

第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。

第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。

//www.ri.cmu.edu/publications/robot-deep-reinforcement-learning-tensor-state-action-spaces-and-auxiliary-task-learning-with-multiple-state-representations/

付費5元查看完整內容

本篇推薦來自CMU-LTI的小姐姐Zhuyun Dai博士論文《Neural Matching and Importance Learning in Information Retrieval》,是信息檢索領域值得關注的最新工作。

作者介紹:

Zhuyun Dai

卡內基梅隆大學語言技術學院(LTI)的博士生。研究方向是提升當今信息檢索系統的語言理解能力,構建下一代信息助理系統,幫助人們無縫地獲取世界上的知識。

//www.cs.cmu.edu/~zhuyund/index.html

信息檢索中的神經匹配與重要性學習

地址:

在50-60年的時間里,信息檢索(IR)系統依賴于詞匯袋方法。盡管詞包檢索有一些長期存在的限制,但解決這些問題的嘗試大多是不成功的。最近,神經網絡為自然語言建模提供了一種新的范式。這篇論文的目的是結合IR的觀點和神經網絡的關鍵優勢,以帶來更深入的語言理解IR。

本論文的第一部分主要研究如何匹配查詢和文檔。 最先進的排序器以前依賴于精確的詞匯匹配,這導致了眾所周知的詞匯不匹配問題。本文開發了將軟匹配引入相關性排序的神經模型。利用分布式文本表示,我們的模型可以對每個查詢詞和每個文檔詞進行軟匹配。由于軟匹配信號有噪聲,本文提出了一種新的核池技術,該技術根據軟匹配對相關性的貢獻對軟匹配進行分組。本文還研究了預訓練好的模型參數是否可以改善低資源域,以及模型架構在非文本檢索任務中是否可重用。我們的方法比以前最先進的排名系統有很大的優勢。

本論文的第二部分主要研究如何表示查詢和文檔。一個典型的搜索引擎使用頻率統計來確定單詞的權重,但是頻繁的單詞對文本的意義不一定是必要的。本論文開發的神經網絡,以估計詞的重要性,基于如何相互作用的語言語境。開發了一種弱監督方法,允許在沒有任何人工注釋的情況下訓練我們的模型。我們的模型可以離線運行,在不影響效率的前提下顯著提高了第一階段的檢索。

總之,本文提出了一種新的神經檢索范式,克服了傳統檢索模型在匹配和重要性加權方面的局限性。在神經相關性排序、深度檢索模型和深度文檔理解等方面提出了一些有前景的方法。

付費5元查看完整內容

使用生成模型的無監督學習具有發現3D場景豐富表示的潛力。這種神經場景表示可能隨后支持各種下游任務,從機器人技術到計算機圖形再到醫學成像。然而,現有的方法忽略了場景最基本的屬性之一:三維結構。在這項工作中,我們使神經場景表征與一個感應偏差的三維結構的情況。我們證明了這種歸納偏差如何使無監督的發現幾何和外觀,只給定的二維圖像。通過學習一組這樣的三維結構感知神經表征的分布,我們可以執行聯合重建的三維形狀和外觀只給出一個單一的二維觀察。我們表明,在這個過程中學習到的特征使整個類對象的三維語義分割成為可能,只訓練了30個帶標記的例子,證明了三維形狀、外觀和語義分割之間的緊密聯系。最后,我們討論了場景表示學習在計算機視覺本身中的本質和潛在作用,并討論了未來工作的前景。

付費5元查看完整內容

對自然圖像中的文本進行檢測和識別是計算機視覺領域的兩個主要問題,在體育視頻分析、自動駕駛、工業自動化等領域都有廣泛的應用。他們面臨著共同的具有挑戰性的問題,即文本如何表示和受幾種環境條件的影響的因素。當前最先進的場景文本檢測和/或識別方法利用了深度學習體系結構的進步,并取得了在處理多分辨率和多方向文本時基準數據集的卓越準確性。然而,仍然有幾個挑戰影響自然圖像中的文本,導致現有的方法表現不佳,因為這些模型不能泛化到看不見的數據和不足的標記數據。因此,不同于以往的綜述,這個綜述的目標如下: 首先,提供讀者不僅回顧最近場景文字檢測和識別方法,但也用一個統一的評估框架來呈現廣泛開展實驗的結果, 評估pre-trained模型選擇的方法上具有挑戰性的情況下,這些技術適用于相同的評估標準。其次,識別在自然圖像中檢測或識別文本存在的幾個挑戰,即平面內旋轉、多方向和多分辨率文本、透視失真、光照反射、部分遮擋、復雜字體和特殊字符。最后,本文還提出了這一領域的潛在研究方向,以解決場景文本檢測和識別技術仍面臨的一些挑戰。

付費5元查看完整內容

題目: Deep Learning in Video Multi-Object Tracking: A Survey

簡介: 多對象跟蹤(MOT)的問題在于遵循序列中不同對象(通常是視頻)的軌跡。 近年來,隨著深度學習的興起,提供解決此問題的算法得益于深度模型的表示能力。 本文對采用深度學習模型解決單攝像機視頻中的MOT任務的作品進行了全面的調查。 確定了MOT算法的四個主要步驟,并對這些階段的每個階段如何使用深度學習進行了深入的回顧。 還提供了對三個MOTChallenge數據集上提出的作品的完整實驗比較,確定了表現最好的方法之間的許多相似之處,并提出了一些可能的未來研究方向。

付費5元查看完整內容
北京阿比特科技有限公司