亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在過去的幾年中,深度學習和醫學的交叉領域取得了快速的發展,特別是在醫學圖像的解譯方面。在本文中,我描述了三個關鍵方向,為醫學圖像解釋的深度學習技術的發展提出了挑戰和機遇。首先,我討論了專家級醫學圖像解譯算法的發展,重點是用于低標記醫學數據設置的遷移學習和自監督學習算法。其次,我討論了高質量數據集的設計和管理以及它們在推進算法發展中的作用,重點是使用有限的手動注釋的高質量標記。第三,我討論了真實世界的評估醫學圖像算法的研究,系統地分析了在臨床相關分布變化下的性能。總之,這篇論文總結了關鍵貢獻和見解,在這些方向與關鍵應用跨醫學專業。

//searchworks.stanford.edu/view/13876519

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

機器學習正在醫療健康等各種關鍵應用得到實施。為了能夠信任機器學習模型,并在它出現故障時修復它,能夠解釋它的決策是很重要的。例如,如果一個模型在特定的子群體(性別、種族等)上的表現很差,找出原因并解決它是很重要的。在本文中,我們研究了現有可解釋性方法的不足,并介紹了新的ML可解釋性算法,旨在解決一些不足。數據是訓練機器學習模型的材料。如果不返回最初訓練ML模型的數據,就不可能解釋ML模型的行為。一個基本的挑戰是如何量化每個數據源對模型性能的貢獻。例如,在醫療健康和消費市場,有人提出個人應因其產生的數據而得到補償,但對個人數據的公平估值尚不清楚。在本文中,我們討論了數據公平價值評估的原則框架; 也就是說,給定一個學習算法和一個性能度量來量化結果模型的性能,我們試圖找到單個數據的貢獻。本論文分為3個部分,機器學習的可解釋性和公平性,數據估值,以及用于醫療健康的機器學習——所有這些都被一個共同的目標聯系在一起,即使機器學習的使用對人類的福祉更負責。

//searchworks.stanford.edu/view/13874839

付費5元查看完整內容

在本文中,我們研究了生成模型的幾個重要標準,并引入評價指標來解決每個問題,同時討論了生成模型評價中的上述問題。特別是,我們研究了測量生成輸出的感知現實主義的挑戰,并引入了一個人在循環中的評估系統,利用心理物理學理論,以人類知覺文獻和眾包技術為基礎,構建一個高效、可靠、并采用一致的方法比較不同的模型。除此之外,我們還分析了解纏性(Disentanglement),這是評估已學習表示的一個日益重要的特性,通過使用持久同調測量生成模型數據流形的內在特性。

//searchworks.stanford.edu/view/13883847

付費5元查看完整內容

向量嵌入模型是現代機器學習知識表示和推理方法的基石。這些方法旨在通過在低維向量空間中學習概念和其他領域對象的表示,將語義問題轉化為幾何問題。本著這種精神,這項工作提倡基于密度和區域的表示學習。將領域元素作為幾何對象嵌入到單點之外,使我們能夠自然地表示廣度和一詞多義,進行不對稱比較,回答復雜的查詢,并在標記數據稀缺時提供強烈的歸納偏見。我們提出了一個使用高斯密度的詞表示模型,實現了概念之間的不對稱隱含判斷,以及一個基于軸對齊超矩形表示(盒)格的加權傳遞關系和多元離散數據的概率模型。我們將探討這些嵌入方法在不同的稀疏性、邊緣權值、相關性和獨立結構的適用性,以及表示的擴展和不同的優化策略。我們從理論上研究了盒格的表示能力,并提出了擴展模型來解決在建模困難的分布和圖方面的不足。

付費5元查看完整內容

醫學社區的長期目標是高效和智能地呈現和分析醫學圖像。一方面,這意味著要找到有效的方法來獲取高質量的醫療圖像,以便醫療保健提供者能夠隨時使用。另一方面,它意味著發現智能的方式來解釋醫學圖像,以促進醫療保健的交付。為此,研究人員和醫學專業人員通常尋求使用計算機系統,這些系統通過機器學習技術來處理醫學圖像。應用機器學習的一個關鍵步驟是獲得能很好地描述醫學圖像的信息表示。通常,這是通過手動特征工程來完成的,然而這需要相當多的醫學領域的專業知識。一種可能的解決方法是允許模型從原始數據中自動發現關于目標域的潛在表示。為此,本文將重點放在深度學習上,深度學習只是更廣泛的機器學習家族的一個子集,但最近已經取得了前所未有的進展,在發現高維數據的復雜結構方面顯示出令人難以置信的能力。對于許多計算機視覺任務,深度學習方法已經取得了最先進的性能,以顯著的優勢。本文開發了用于醫學圖像分析、重建和合成的深度學習模型和技術。在醫學圖像分析中,我們注重對醫學圖像內容的理解和對執業醫師的指導。特別是,我們研究了深度學習的方法來解決分類,檢測,分割和配準醫學圖像。在醫學圖像重建和合成中,我們提出利用深度學習的方法內在地學習醫學數據空間,有效地合成真實的醫學圖像。對于重建,我們的目標是生成高質量的醫學圖像和較少的偽影。對于合成,我們的目標是生成真實的醫學圖像,以幫助學習醫學圖像分析或重建模型。這篇論文的貢獻有三方面。首先,我們提出了利用深度學習解決醫學問題的各種方法。其次,我們展示了醫學知識融合在深度學習架構設計中的重要性和有效性。第三,我們展示了深度生成模型在解決醫學圖像重建和合成問題的潛力。

//urresearch.rochester.edu/institutionalPublicationPublicView.action;jsessionid=21A6F9E774F11BA763CA4DD982F79D65?institutionalItemId=35226

付費5元查看完整內容

【導讀】牛津大學的博士生Oana-Maria Camburu撰寫了畢業論文《解釋神經網絡 (Explaining Deep Neural Networks)》,系統性介紹了深度神經網絡可解釋性方面的工作,值得關注。

作者介紹:

Oana-Maria Camburu,來自羅馬尼亞,目前是牛津大學的博士生,主修機器學習、人工智能等方向。

Explaining Deep Neural Networks

深度神經網絡在計算機視覺、自然語言處理和語音識別等不同領域取得了革命性的成功,因此越來越受歡迎。然而,這些模型的決策過程通常是無法向用戶解釋的。在各種領域,如醫療保健、金融或法律,了解人工智能系統所做決策背后的原因至關重要。因此,最近研究了幾個解釋神經模型的方向。

在這篇論文中,我研究了解釋深層神經網絡的兩個主要方向。第一個方向由基于特征的事后解釋方法組成,也就是說,這些方法旨在解釋一個已經訓練過的固定模型(事后解釋),并提供輸入特征方面的解釋,例如文本標記和圖像的超級像素(基于特征的)。第二個方向由生成自然語言解釋的自解釋神經模型組成,也就是說,模型有一個內置模塊,為模型的預測生成解釋。在這些方面的貢獻如下:

  • 首先,我揭示了僅使用輸入特征來解釋即使是微不足道的模型也存在一定的困難。我表明,盡管有明顯的隱含假設,即解釋方法應該尋找一種特定的基于真實值特征的解釋,但對于預測通常有不止一種這樣的解釋。我還展示了兩類流行的解釋方法,它們針對的是不同類型的事實基礎解釋,但沒有明確地提及它。此外,我還指出,有時這兩種解釋都不足以提供一個實例上決策過程的完整視圖。

  • 其次,我還介紹了一個框架,用于自動驗證基于特征的事后解釋方法對模型的決策過程的準確性。這個框架依賴于一種特定類型的模型的使用,這種模型有望提供對其決策過程的洞察。我分析了這種方法的潛在局限性,并介紹了減輕這些局限性的方法。引入的驗證框架是通用的,可以在不同的任務和域上實例化,以提供現成的完整性測試,這些測試可用于測試基于特性的后特殊解釋方法。我在一個情緒分析任務上實例化了這個框架,并提供了完備性測試s1,在此基礎上我展示了三種流行的解釋方法的性能。

  • 第三,為了探索為預測生成自然語言解釋的自解釋神經模型的發展方向,我在有影響力的斯坦福自然語言推斷(SNLI)數據集之上收集了一個巨大的數據集,數據集約為570K人類編寫的自然語言解釋。我把這個解釋擴充數據集稱為e-SNLI。我做了一系列的實驗來研究神經模型在測試時產生正確的自然語言解釋的能力,以及在訓練時提供自然語言解釋的好處。

  • 第四,我指出,目前那些為自己的預測生成自然語言解釋的自解釋模型,可能會產生不一致的解釋,比如“圖像中有一只狗。”以及“同一幅圖片中沒有狗”。不一致的解釋要么表明解釋沒有忠實地描述模型的決策過程,要么表明模型學習了一個有缺陷的決策過程。我將介紹一個簡單而有效的對抗性框架,用于在生成不一致的自然語言解釋時檢查模型的完整性。此外,作為框架的一部分,我解決了使用精確目標序列的對抗性攻擊的問題,這是一個以前在序列到序列攻擊中沒有解決的場景,它對于自然語言處理中的其他任務很有用。我將這個框架應用到e-SNLI上的一個最新的神經模型上,并表明這個模型會產生大量的不一致性。

這項工作為獲得更穩健的神經模型以及對預測的可靠解釋鋪平了道路。

地址: //arxiv.org/abs/2010.01496

付費5元查看完整內容

數據科學是設計從大量數據中提取知識的算法和管道。時間序列分析是數據科學的一個領域,它感興趣的是分析按時間順序排列的數值序列。時間序列特別有趣,因為它讓我們能夠可視化和理解一個過程在一段時間內的演變。他們的分析可以揭示數據之間的趨勢、關系和相似性。存在大量以時間序列形式包含數據的領域:醫療保健(心電圖、血糖等)、活動識別、遙感、金融(股票市場價格)、工業(傳感器)等。

在數據挖掘中,分類是一項受監督的任務,它涉及從組織到類中的帶標簽的數據中學習模型,以便預測新實例的正確標簽。時間序列分類包括構造用于自動標注時間序列數據的算法。例如,使用健康患者或心臟病患者的一組標記的心電圖,目標是訓練一個模型,能夠預測新的心電圖是否包含病理。時間序列數據的時序方面需要算法的發展,這些算法能夠利用這種時間特性,從而使傳統表格數據現有的現成機器學習模型在解決底層任務時處于次優狀態。

在這種背景下,近年來,深度學習已經成為解決監督分類任務的最有效方法之一,特別是在計算機視覺領域。本論文的主要目的是研究和發展專門為分類時間序列數據而構建的深度神經網絡。因此,我們進行了第一次大規模的實驗研究,這使我們能夠比較現有的深度學習方法,并將它們與其他基于非深度學習的先進方法進行比較。隨后,我們在這一領域做出了大量的貢獻,特別是在遷移學習、數據增強、集成和對抗性攻擊的背景下。最后,我們還提出了一種新的架構,基于著名的Inception 網絡(谷歌),它是目前最有效的架構之一。

我們在包含超過100個數據集的基準測試上進行的實驗使我們能夠驗證我們的貢獻的性能。最后,我們還展示了深度學習方法在外科數據科學領域的相關性,我們提出了一種可解釋的方法,以便從運動學多變量時間序列數據評估外科技能。

深度學習序列分類概述

在過去的二十年中,TSC被認為是數據挖掘中最具挑戰性的問題之一(Yang and Wu, 2006; Esling and Agon, 2012)。隨著時間數據可用性的增加(Silva et al.,2018),自2015年以來已有數百種TSC算法被提出(Bagnall et al.,2017)。由于時間序列數據具有自然的時間順序,幾乎在每一個需要某種人類認知過程的任務中都存在時間序列數據(Langkvist, Karlsson, and Loutfi, 2014)。事實上,任何使用考慮到排序概念的已注冊數據的分類問題都可以被視為TSC問題(Cristian Borges Gamboa, 2017)。時間序列在許多實際應用中都遇到過,包括醫療保健(Gogolou等,2018)和人類活動識別(Wang et al.,2018;到聲學場景分類(Nwe, Dat, and Ma, 2017)和網絡安全(Susto, Cenedese, and Terzi, 2018)。此外,UCR/UEA檔案中數據集類型的多樣性(Dau等,2019;Bagnall et al,2017)(最大的時間序列數據集儲存庫)展示了TSC問題的不同應用。

付費5元查看完整內容

使用生成模型的無監督學習具有發現3D場景豐富表示的潛力。這種神經場景表示可能隨后支持各種下游任務,從機器人技術到計算機圖形再到醫學成像。然而,現有的方法忽略了場景最基本的屬性之一:三維結構。在這項工作中,我們使神經場景表征與一個感應偏差的三維結構的情況。我們證明了這種歸納偏差如何使無監督的發現幾何和外觀,只給定的二維圖像。通過學習一組這樣的三維結構感知神經表征的分布,我們可以執行聯合重建的三維形狀和外觀只給出一個單一的二維觀察。我們表明,在這個過程中學習到的特征使整個類對象的三維語義分割成為可能,只訓練了30個帶標記的例子,證明了三維形狀、外觀和語義分割之間的緊密聯系。最后,我們討論了場景表示學習在計算機視覺本身中的本質和潛在作用,并討論了未來工作的前景。

付費5元查看完整內容

凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。

付費5元查看完整內容

論文摘要:

教機器理解人類語言文檔是人工智能中最難以捉摸和長期存在的挑戰之一。本文探討了閱讀理解的問題:如何構建計算機系統來閱讀文章和回答理解問題。一方面,我們認為閱讀理解是評價計算機系統對人類語言理解程度的一項重要任務。另一方面,如果我們能夠構建高性能的閱讀理解系統,那么它將成為問答和對話系統等應用的關鍵技術。本文以神經閱讀理解為研究對象:一種基于深度神經網絡的閱讀理解模型。與傳統的稀疏的、手工設計的基于特征的模型相比,這些端到端神經模型在學習豐富的語言現象方面更加有效,并且在所有現代閱讀理解基準上的表現都有很大的提高。本文由兩部分組成。第一部分是對神經閱讀理解的本質進行概括,介紹我們在構建有效的神經閱讀理解模型方面所做的努力,更重要的是了解神經閱讀理解模型實際學到了什么,以及解決當前任務需要什么樣的語言理解深度。我們還總結了該領域的最新進展,討論了該領域的未來發展方向和有待解決的問題。在本文的第二部分,我們探討了如何在最近神經閱讀理解成功的基礎上建立實際應用。特別是,我們開創了兩個新的研究方向:1)如何將信息檢索技術與神經閱讀理解相結合,解決大規模開放領域的問題;(2)如何從當前的單圈、跨步閱讀理解模式中構建會話問答系統。我們在DrQA和CoQA項目中實現了這些想法,并證明了這些方法的有效性。我們相信他們對推動未來的語言技術有很大幫助。

付費5元查看完整內容
北京阿比特科技有限公司