We review recent results on the connection between Hermite-Pad\'e approximation problem, multiple orthogonal polynomials, and multidimensional Toda equations in continuous and discrete time. In order to motivate interest in the subject we first present a pedagogical introduction to the classical, by now, relation between the Pad\'e approximation problem, orthogonal polynomials, and the Toda lattice equations. We describe also briefly generalization of the connection to the interpolation problems and to the non-commutative algebra level.
We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.
We consider the coupled system of the Landau--Lifshitz--Gilbert equation and the conservation of linear momentum law to describe magnetic processes in ferromagnetic materials including magnetoelastic effects in the small-strain regime. For this nonlinear system of time-dependent partial differential equations, we present a decoupled integrator based on first-order finite elements in space and an implicit one-step method in time. We prove unconditional convergence of the sequence of discrete approximations towards a weak solution of the system as the mesh size and the time-step size go to zero. Compared to previous numerical works on this problem, for our method, we prove a discrete energy law that mimics that of the continuous problem and, passing to the limit, yields an energy inequality satisfied by weak solutions. Moreover, our method does not employ a nodal projection to impose the unit length constraint on the discrete magnetisation, so that the stability of the method does not require weakly acute meshes. Furthermore, our integrator and its analysis hold for a more general setting, including body forces and traction, as well as a more general representation of the magnetostrain. Numerical experiments underpin the theory and showcase the applicability of the scheme for the simulation of the dynamical processes involving magnetoelastic materials at submicrometer length scales.
We consider the approximation of weakly T-coercive operators. The main property to ensure the convergence thereof is the regularity of the approximation (in the vocabulary of discrete approximation schemes). In a previous work the existence of discrete operators $T_n$ which converge to $T$ in a discrete norm was shown to be sufficient to obtain regularity. Although this framework proved usefull for many applications for some instances the former assumption is too strong. Thus in the present article we report a weaker criterium for which the discrete operators $T_n$ only have to converge point-wise, but in addition a weak T-coercivity condition has to be satisfied on the discrete level. We apply the new framework to prove the convergence of certain $H^1$-conforming finite element discretizations of the damped time-harmonic Galbrun's equation, which is used to model the oscillations of stars. A main ingredient in the latter analysis is the uniformly stable invertibility of the divergence operator on certain spaces, which is related to the topic of divergence free elements for the Stokes equation.
We present a hybrid method for time-dependent particle transport problems that combines Monte Carlo (MC) estimation with deterministic solutions based on discrete ordinates. For spatial discretizations, the MC algorithm computes a piecewise constant solution and the discrete ordinates uses bilinear discontinuous finite elements. From the hybridization of the problem, the resulting problem solved by Monte Carlo is scattering free, resulting in a simple, efficient solution procedure. Between time steps, we use a projection approach to ``relabel'' collided particles as uncollided particles. From a series of standard 2-D Cartesian test problems we observe that our hybrid method has improved accuracy and reduction in computational complexity of approximately an order of magnitude relative to standard discrete ordinates solutions.
We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results, and a couple of applications in view of bifurcation analysis.
The continuous-time Markov chain (CTMC) is the mathematical workhorse of evolutionary biology. Learning CTMC model parameters using modern, gradient-based methods requires the derivative of the matrix exponential evaluated at the CTMC's infinitesimal generator (rate) matrix. Motivated by the derivative's extreme computational complexity as a function of state space cardinality, recent work demonstrates the surprising effectiveness of a naive, first-order approximation for a host of problems in computational biology. In response to this empirical success, we obtain rigorous deterministic and probabilistic bounds for the error accrued by the naive approximation and establish a "blessing of dimensionality" result that is universal for a large class of rate matrices with random entries. Finally, we apply the first-order approximation within surrogate-trajectory Hamiltonian Monte Carlo for the analysis of the early spread of SARS-CoV-2 across 44 geographic regions that comprise a state space of unprecedented dimensionality for unstructured (flexible) CTMC models within evolutionary biology.
Recent work has proposed solving the k-means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k-means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms and there has been no quantum-tailored coreset technique which is designed to boost the accuracy of quantum algorithms. In this work, we propose solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customised coreset method, the Contour coreset, which has been formulated with specific focus on quantum algorithms. Extensive simulations with synthetic and real-life data demonstrated that our VQE+Contour Coreset approach outperforms existing QAOA+Coreset k-means clustering approaches with higher accuracy and lower standard deviation. Our work has shown that quantum tailored coreset techniques has the potential to significantly boost the performance of quantum algorithms when compared to using generic off-the-shelf coreset techniques.
This paper focuses on the randomized Milstein scheme for approximating solutions to stochastic Volterra integral equations with weakly singular kernels, where the drift coefficients are non-differentiable. An essential component of the error analysis involves the utilization of randomized quadrature rules for stochastic integrals to avoid the Taylor expansion in drift coefficient functions. Finally, we implement the simulation of multiple singular stochastic integral in the numerical experiment by applying the Riemann-Stieltjes integral.
We consider a quasi-classical version of the Alicki-Fannes-Winter technique widely used for quantitative continuity analysis of characteristics of quantum systems and channels. This version allows us to obtain continuity bounds under constraints of different types for quantum states belonging to subsets of a special form that can be called "quasi-classical". Several applications of the proposed method are described. Among others, we obtain the universal continuity bound for the von Neumann entropy under the energy-type constraint which in the case of one-mode quantum oscillator is close to the specialized optimal continuity bound presented recently by Becker, Datta and Jabbour. We obtain semi-continuity bounds for the quantum conditional entropy of quantum-classical states and for the entanglement of formation in bipartite quantum systems with the rank/energy constraint imposed only on one state. Semi-continuity bounds for entropic characteristics of classical random variables and classical states of a multi-mode quantum oscillator are also obtained.
We present a novel Finite Volume (FV) scheme on unstructured polygonal meshes that is provably compliant with the Second Law of Thermodynamics and the Geometric Conservation Law (GCL) at the same time. The governing equations are provided by a subset of the class of symmetric and hyperbolic thermodynamically compatible (SHTC) models. Our numerical method discretizes the equations for the conservation of momentum, total energy, distortion tensor and thermal impulse vector, hence accounting in one single unified mathematical formalism for a wide range of physical phenomena in continuum mechanics. By means of two conservative corrections directly embedded in the definition of the numerical fluxes, the new schemes are proven to satisfy two extra conservation laws, namely an entropy balance law and a geometric equation that links the distortion tensor to the density evolution. As such, the classical mass conservation equation can be discarded. Firstly, the GCL is derived at the continuous level, and subsequently it is satisfied by introducing the new concepts of general potential and generalized Gibbs relation. Once compatibility of the GCL is ensured, thermodynamic compatibility is tackled in the same manner, thus achieving the satisfaction of a local cell entropy inequality. The two corrections are orthogonal, meaning that they can coexist simultaneously without interfering with each other. The compatibility of the new FV schemes holds true at the semi-discrete level, and time integration of the governing PDE is carried out relying on Runge-Kutta schemes. A large suite of test cases demonstrates the structure preserving properties of the schemes at the discrete level as well.