亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Teleoperation is increasingly recognized as a viable solution for deploying robots in hazardous environments. Controlling a robot to perform a complex or demanding task may overload operators resulting in poor performance. To design a robot controller to assist the human in executing such challenging tasks, a comprehensive understanding of the interplay between the robot's autonomous behavior and the operator's internal state is essential. In this paper, we investigate the relationships between robot autonomy and both the human user's cognitive load and trust levels, and the potential existence of three-way interactions in the robot-assisted execution of the task. Our user study (N=24) results indicate that while autonomy level influences the teleoperator's perceived cognitive load and trust, there is no clear interaction between these factors. Instead, these elements appear to operate independently, thus highlighting the need to consider both cognitive load and trust as distinct but interrelated factors in varying the robot autonomy level in shared-control settings. This insight is crucial for the development of more effective and adaptable assistive robotic systems.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Segment Anything · Prompt · Performer · 估計/估計量 ·
2024 年 3 月 18 日

The Segment Anything Model (SAM) has recently emerged as a groundbreaking foundation model for prompt-driven image segmentation tasks. However, both the original SAM and its medical variants require slice-by-slice manual prompting of target structures, which directly increase the burden for applications. Despite attempts of auto-prompting to turn SAM into a fully automatic manner, it still exhibits subpar performance and lacks of reliability especially in the field of medical imaging. In this paper, we propose UR-SAM, an uncertainty rectified SAM framework to enhance the reliability for auto-prompting medical image segmentation. Building upon a localization framework for automatic prompt generation, our method incorporates a prompt augmentation module to obtain a series of input prompts for SAM for uncertainty estimation and an uncertainty-based rectification module to further utilize the distribution of estimated uncertainty to improve the segmentation performance. Extensive experiments on two public 3D medical datasets covering the segmentation of 35 organs demonstrate that without supplementary training or fine-tuning, our method further improves the segmentation performance with up to 10.7 % and 13.8 % in dice similarity coefficient, demonstrating efficiency and broad capabilities for medical image segmentation without manual prompting.

Spectrum-Based Fault Localization (SBFL) is a technique to be used during debugging, the premise of which is that, based on the test case outcomes and code coverage, faulty code elements can be automatically detected. SBFL is popular among researchers because it is lightweight and easy to implement, and there is a lot of potential in it when it comes to research that aims to improve its effectiveness. Despite this, the technique cannot be found in contemporary development and debugging tools, only a handful of research prototypes are available. Reasons for this can be multiple, including the algortihms' sub-optimal effectiveness and other technical weaknesses. But, also the lack of clear functional and non-functional requirements for such a tool, either standalone or integrated into IDEs. In this paper, we attempt to provide such a list in form of recommendations, based on surveying the most popular SBFL tools and on our own researchers' and tool builders' experience.

Parallel self-assembly is an efficient approach to accelerate the assembly process for modular robots. However, these approaches cannot accommodate complicated environments with obstacles, which restricts their applications. This paper considers the surrounding stationary obstacles and proposes a parallel self-assembly planning algorithm named SAPOA. With this algorithm, modular robots can avoid immovable obstacles when performing docking actions, which adapts the parallel self-assembly process to complex scenes. To validate the efficiency and scalability, we have designed 25 distinct grid maps with different obstacle configurations to simulate the algorithm. From the results compared to the existing parallel self-assembly algorithms, our algorithm shows a significantly higher success rate, which is more than 80%. For verification in real-world applications, a multi-agent hardware testbed system is developed. The algorithm is successfully deployed on four omnidirectional unmanned surface vehicles, CuBoats. The navigation strategy that translates the discrete planner, SAPOA, to the continuous controller on the CuBoats is presented. The algorithm's feasibility and flexibility were demonstrated through successful self-assembly experiments on 5 maps with varying obstacle configurations.

Computational fluid dynamics (CFD) simulations of a single-cylinder gasoline compression ignition engine are performed to investigate the impact of gasoline-ethanol blending on autoignition, nitrogen oxide (NOx), and soot emissions under low-load conditions. A four-component toluene primary reference fuel (TPRF) + ethanol (ETPRF) surrogate (with 10% ethanol by volume; E10) is employed to represent the test gasoline (RD5-87). A 3D engine CFD model employing finite-rate chemistry with a skeletal kinetic mechanism, adaptive mesh refinement (AMR), and hybrid method of moments (HMOM) is adopted to capture in-cylinder combustion and soot/NOx emissions. The engine CFD model is validated against experimental data for three gasoline-ethanol blends: E10, E30 and E100, with varying ethanol content by volume. Model validation is carried out for multiple start-of-injection (SOI) timings (-21, -27, -36, and -45 crank angle degrees after top-dead-center (aTDC)) with respect to in-cylinder pressure, heat release rate, combustion phasing, NOx and soot emissions. For late injection timings (-21 and -27oaTDC), E30 yields higher soot than E10; while the trend reverses for early injection cases (-36 and -45oaTDC). E100 yields the lowest amount of soot among all fuels irrespective of SOI timing. Further, E10 shows a non-monotonic trend in soot emissions with SOI timing: SOI-36>SOI-45>SOI-21>SOI-27, while soot emissions from E30 exhibit monotonic decrease with advancing SOI timing. NOx emissions from various fuels follow a trend of E10>E30>E100. NOx emissions increase as SOI timing is advanced for all fuels, with an anomaly for E10 and E100 where NOx decreases when SOI is advanced beyond -36oaTDC. Detailed analysis of the numerical results is performed to investigate the emission trends and elucidate the impact of chemical composition and physical properties on autoignition and emissions characteristics.

In evolutionary robotics, jointly optimising the design and the controller of robots is a challenging task due to the huge complexity of the solution space formed by the possible combinations of body and controller. We focus on the evolution of robots that can be physically created rather than just simulated, in a rich morphological space that includes a voxel-based chassis, wheels, legs and sensors. On the one hand, this space offers a high degree of liberty in the range of robots that can be produced, while on the other hand introduces a complexity rarely dealt with in previous works relating to matching controllers to designs and in evolving closed-loop control. This is usually addressed by augmenting evolution with a learning algorithm to refine controllers. Although several frameworks exist, few have studied the role of the \textit{evolutionary dynamics} of the intertwined `evolution+learning' processes in realising high-performing robots. We conduct an in-depth study of the factors that influence these dynamics, specifically: synchronous vs asynchronous evolution; the mechanism for replacing parents with offspring, and rewarding goal-based fitness vs novelty via selection. Results show that asynchronicity combined with goal-based selection and a `replace worst' strategy results in the highest performance.

The explanations of large language models have recently been shown to be sensitive to the randomness used for their training, creating a need to characterize this sensitivity. In this paper, we propose a characterization that questions the possibility to provide simple and informative explanations for such models. To this end, we give statistical definitions for the explanations' signal, noise and signal-to-noise ratio. We highlight that, in a typical case study where word-level univariate explanations are analyzed with first-order statistical tools, the explanations of simple feature-based models carry more signal and less noise than those of transformer ones. We then discuss the possibility to improve these results with alternative definitions of signal and noise that would capture more complex explanations and analysis methods, while also questioning the tradeoff with their plausibility for readers.

The presence of toxic and gender-identity derogatory language in open-source software (OSS) communities has recently become a focal point for researchers. Such comments not only lead to frustration and disengagement among developers but may also influence their leave from the OSS projects. Despite ample evidence suggesting that diverse teams enhance productivity, the existence of toxic or gender identity discriminatory communications poses a significant threat to the participation of individuals from marginalized groups and, as such, may act as a barrier to fostering diversity and inclusion in OSS projects. However, there is a notable lack of research dedicated to exploring the association between gender-based toxic and derogatory language with a perceptible diversity of open-source software teams. Consequently, this study aims to investigate how such content influences the gender, ethnicity, and tenure diversity of open-source software development teams. To achieve this, we extract data from active GitHub projects, assess various project characteristics, and identify instances of toxic and gender-discriminatory language within issue/pull request comments. Using these attributes, we construct a regression model to explore how they associate with the perceptible diversity of those projects.

Globally, there is an increased need for guidelines to produce high-quality data outputs for analysis. There is no framework currently exists providing guidelines for a comprehensive approach in producing analysis ready data (ARD). Through critically reviewing and summarising current literature, this paper proposes such guidelines for the creation of ARD. The guidelines proposed in this paper inform ten steps in the generation of ARD: ethics, project documentation, data governance, data management, data storage, data discovery and collection, data cleaning, quality assurance, metadata, and data dictionary. These steps are illustrated through a substantive case study which aimed to create ARD for a digital spatial platform: the Australian Child and Youth Wellbeing Atlas (ACYWA).

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司