Movable antenna (MA) array is a novel technology recently developed where positions of transmit/receive antennas can be flexibly adjusted in the specified region to reconfigure the wireless channel and achieve a higher capacity. In this letter, we, for the first time, investigate the MA array-assisted physical-layer security where the confidential information is transmitted from a MA array-enabled Alice to a single-antenna Bob, in the presence of multiple single-antenna and colluding eavesdroppers. We aim to maximize the achievable secrecy rate by jointly designing the transmit beamforming and positions of all antennas at Alice subject to the transmit power budget and specified regions for positions of all transmit antennas. The resulting problem is highly non-convex, for which the projected gradient ascent (PGA) and the alternating optimization methods are utilized to obtain a high-quality suboptimal solution. Simulation results demonstrate that since the additional spatial degree of freedom (DoF) can be fully exploited, the MA array significantly enhances the secrecy rate compared to the conventional fixed-position antenna (FPA) array.
One of the uses of sensor arrays is for spatial filtering or beamforming. Current digital signal processing methods facilitate complex-weighted beamforming, providing flexibility in array design. Previous studies proposed the use of real-valued beamforming weights, which although reduce flexibility in design, may provide a range of benefits, e.g., simplified beamformer implementation or efficient beamforming algorithms. This paper presents a new method for the design of arrays with real-valued weights, that achieve maximum directivity, providing closed-form solution to array weights. The method is studied for linear and spherical arrays, where it is shown that rigid spherical arrays are particularly suitable for real-weight designs as they do not suffer from grating lobes, a dominant feature in linear arrays with real weights. A simulation study is presented for linear and spherical arrays, along with an experimental investigation, validating the theoretical developments.
The novel concept of near-field velocity sensing is proposed. In contrast to far-field velocity sensing, near-field velocity sensing enables the simultaneous estimation of both radial and transverse velocities of a moving target. A maximum-likelihood-based method is proposed for jointly estimating the radial and transverse velocities from the echo signals. Assisted by near-field velocity sensing, a predictive beamforming framework is proposed for a moving communication user, which requires no channel estimation but achieves seamless data transmission. Finally, numerical examples validate the proposed approaches.
Information aging has gained prominence in characterizing communication protocols for timely remote estimation and control applications. This work proposes an Age of Information (AoI)-aware threshold-based dynamic frame slotted ALOHA (T-DFSA) for contention resolution in random access machine-type communication networks. Unlike conventional DFSA that maximizes the throughput in each frame, the frame length and age-gain threshold in T-DFSA are determined to minimize the normalized average AoI reduction of the network in each frame. At the start of each frame in the proposed protocol, the common Access Point (AP) stores an estimate of the age-gain distribution of a typical node. Depending on the observed status of the slots, age-gains of successful nodes, and maximum available AoI, the AP adjusts its estimation in each frame. The maximum available AoI is exploited to derive the maximum possible age-gain at each frame and thus, to avoid overestimating the age-gain threshold, which may render T-DFSA unstable. Numerical results validate our theoretical analysis and demonstrate the effectiveness of the proposed T-DFSA compared to the existing optimal frame slotted ALOHA, threshold-ALOHA, and age-based thinning protocols in a considerable range of update generation rates.
We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated first-order algorithms for constrained optimization. Unlike Frank-Wolfe or projected gradients, these algorithms avoid optimization over the entire feasible set at each iteration. We prove convergence to stationary points even in a nonconvex setting and we derive accelerated rates for the convex setting both in continuous time, as well as in discrete time. An important property of these algorithms is that constraints are expressed in terms of velocities instead of positions, which naturally leads to sparse, local and convex approximations of the feasible set (even if the feasible set is nonconvex). Thus, the complexity tends to grow mildly in the number of decision variables and in the number of constraints, which makes the algorithms suitable for machine learning applications. We apply our algorithms to a compressed sensing and a sparse regression problem, showing that we can treat nonconvex $\ell^p$ constraints ($p<1$) efficiently, while recovering state-of-the-art performance for $p=1$.
Incorporating symmetry as an inductive bias into multi-agent reinforcement learning (MARL) has led to improvements in generalization, data efficiency, and physical consistency. While prior research has succeeded in using perfect symmetry prior, the realm of partial symmetry in the multi-agent domain remains unexplored. To fill in this gap, we introduce the partially symmetric Markov game, a new subclass of the Markov game. We then theoretically show that the performance error introduced by utilizing symmetry in MARL is bounded, implying that the symmetry prior can still be useful in MARL even in partial symmetry situations. Motivated by this insight, we propose the Partial Symmetry Exploitation (PSE) framework that is able to adaptively incorporate symmetry prior in MARL under different symmetry-breaking conditions. Specifically, by adaptively adjusting the exploitation of symmetry, our framework is able to achieve superior sample efficiency and overall performance of MARL algorithms. Extensive experiments are conducted to demonstrate the superior performance of the proposed framework over baselines. Finally, we implement the proposed framework in real-world multi-robot testbed to show its superiority.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.