Animal vision is thought to optimize various objectives from metabolic efficiency to discrimination performance, yet its ultimate objective is to facilitate the survival of the animal within its ecological niche. However, modeling animal behavior in complex environments has been challenging. To study how environments shape and constrain visual processing, we developed a deep reinforcement learning framework in which an agent moves through a 3-d environment that it perceives through a vision model, where its only goal is to survive. Within this framework we developed a foraging task where the agent must gather food that sustains it, and avoid food that harms it. We first established that the complexity of the vision model required for survival on this task scaled with the variety and visual complexity of the food in the environment. Moreover, we showed that a recurrent network architecture was necessary to fully exploit complex vision models on the most visually demanding tasks. Finally, we showed how different network architectures learned distinct representations of the environment and task, and lead the agent to exhibit distinct behavioural strategies. In summary, this paper lays the foundation for a computational approach to visual ecology, provides extensive benchmarks for future work, and demonstrates how representations and behaviour emerge from an agent's drive for survival.
The value function plays a crucial role as a measure for the cumulative future reward an agent receives in both reinforcement learning and optimal control. It is therefore of interest to study how similar the values of neighboring states are, i.e., to investigate the continuity of the value function. We do so by providing and verifying upper bounds on the value function's modulus of continuity. Additionally, we show that the value function is always H\"older continuous under relatively weak assumptions on the underlying system and that non-differentiable value functions can be made differentiable by slightly "disturbing" the system.
Language models and humans are two types of learning systems. Finding or facilitating commonalities could enable major breakthroughs in our understanding of the acquisition and evolution of language. Many theories of language evolution rely heavily on learning biases and learning pressures. Yet due to substantial differences in learning pressures, it is questionable whether the similarity between humans and machines is sufficient for insights to carry over and to be worth testing with human participants. Here, we review the emergent communication literature, a subfield of multi-agent reinforcement learning, from a language evolution perspective. We find that the emergent communication literature excels at designing and adapting models to recover initially absent linguistic phenomena of natural languages. Based on a short literature review, we identify key pressures that have recovered initially absent human patterns in emergent communication models: communicative success, efficiency, learnability, and other psycho-/sociolinguistic factors. We argue that this may serve as inspiration for how to design language models for language acquisition and language evolution research.
The latency location routing problem integrates the facility location problem and the multi-depot cumulative capacitated vehicle routing problem. This problem involves making simultaneous decisions about depot locations and vehicle routes to serve customers while aiming to minimize the sum of waiting (arriving) times for all customers. To address this computationally challenging problem, we propose a reinforcement learning guided hybrid evolutionary algorithm following the framework of the memetic algorithm. The proposed algorithm relies on a diversity-enhanced multi-parent edge assembly crossover to build promising offspring and a reinforcement learning guided variable neighborhood descent to determine the exploration order of multiple neighborhoods. Additionally, strategic oscillation is used to achieve a balanced exploration of both feasible and infeasible solutions. The competitiveness of the algorithm against state-of-the-art methods is demonstrated by experimental results on the three sets of 76 popular instances, including 51 improved best solutions (new upper bounds) for the 59 instances with unknown optima and equal best results for the remaining instances. We also conduct additional experiments to shed light on the key components of the algorithm.
Developing reliable mechanisms for continuous local learning is a central challenge faced by biological and artificial systems. Yet, how the environmental factors and structural constraints on the learning network influence the optimal plasticity mechanisms remains obscure even for simple settings. To elucidate these dependencies, we study meta-learning via evolutionary optimization of simple reward-modulated plasticity rules in embodied agents solving a foraging task. We show that unconstrained meta-learning leads to the emergence of diverse plasticity rules. However, regularization and bottlenecks to the model help reduce this variability, resulting in interpretable rules. Our findings indicate that the meta-learning of plasticity rules is very sensitive to various parameters, with this sensitivity possibly reflected in the learning rules found in biological networks. When included in models, these dependencies can be used to discover potential objective functions and details of biological learning via comparisons with experimental observations.
We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.
In the realm of Federated Learning (FL) applied to remote sensing image classification, this study introduces and assesses several innovative communication strategies. Our exploration includes feature-centric communication, pseudo-weight amalgamation, and a combined method utilizing both weights and features. Experiments conducted on two public scene classification datasets unveil the effectiveness of these strategies, showcasing accelerated convergence, heightened privacy, and reduced network information exchange. This research provides valuable insights into the implications of feature-centric communication in FL, offering potential applications tailored for remote sensing scenarios.
Given the rapid advancement of artificial intelligence, understanding the foundations of intelligent behaviour is increasingly important. Active inference, regarded as a general theory of behaviour, offers a principled approach to probing the basis of sophistication in planning and decision-making. In this paper, we examine two decision-making schemes in active inference based on 'planning' and 'learning from experience'. Furthermore, we also introduce a mixed model that navigates the data-complexity trade-off between these strategies, leveraging the strengths of both to facilitate balanced decision-making. We evaluate our proposed model in a challenging grid-world scenario that requires adaptability from the agent. Additionally, our model provides the opportunity to analyze the evolution of various parameters, offering valuable insights and contributing to an explainable framework for intelligent decision-making.
One of the fundamental steps toward understanding a complex system is identifying variation at the scale of the system's components that is most relevant to behavior on a macroscopic scale. Mutual information provides a natural means of linking variation across scales of a system due to its independence of functional relationship between observables. However, characterizing the manner in which information is distributed across a set of observables is computationally challenging and generally infeasible beyond a handful of measurements. Here we propose a practical and general methodology that uses machine learning to decompose the information contained in a set of measurements by jointly optimizing a lossy compression of each measurement. Guided by the distributed information bottleneck as a learning objective, the information decomposition identifies the variation in the measurements of the system state most relevant to specified macroscale behavior. We focus our analysis on two paradigmatic complex systems: a Boolean circuit and an amorphous material undergoing plastic deformation. In both examples, the large amount of entropy of the system state is decomposed, bit by bit, in terms of what is most related to macroscale behavior. The identification of meaningful variation in data, with the full generality brought by information theory, is made practical for studying the connection between micro- and macroscale structure in complex systems.
The ability to learn and compose functions is foundational to efficient learning and reasoning in humans, enabling flexible generalizations such as creating new dishes from known cooking processes. Beyond sequential chaining of functions, existing linguistics literature indicates that humans can grasp more complex compositions with interacting functions, where output production depends on context changes induced by different function orderings. Extending the investigation into the visual domain, we developed a function learning paradigm to explore the capacity of humans and neural network models in learning and reasoning with compositional functions under varied interaction conditions. Following brief training on individual functions, human participants were assessed on composing two learned functions, in ways covering four main interaction types, including instances in which the application of the first function creates or removes the context for applying the second function. Our findings indicate that humans can make zero-shot generalizations on novel visual function compositions across interaction conditions, demonstrating sensitivity to contextual changes. A comparison with a neural network model on the same task reveals that, through the meta-learning for compositionality (MLC) approach, a standard sequence-to-sequence Transformer can mimic human generalization patterns in composing functions.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.