亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the decidability of the monadic second-order (MSO) theory of the structure $\langle \mathbb{N};<,P_1, \ldots,P_k \rangle$, for various unary predicates $P_1,\ldots,P_k \subseteq \mathbb{N}$. We focus in particular on "arithmetic" predicates arising in the study of linear recurrence sequences, such as fixed-base powers $\mathsf{Pow}_k = \{k^n : n \in \mathbb{N}\}$, $k$-th powers $\mathsf{N}_k = \{n^k : n \in \mathbb{N}\}$, and the set of terms of the Fibonacci sequence $\mathsf{Fib} = \{0,1,2,3,5,8,13,\ldots\}$ (and similarly for other linear recurrence sequences having a single, non-repeated, dominant characteristic root). We obtain several new unconditional and conditional decidability results, a select sample of which are the following: $\bullet$ The MSO theory of $\langle \mathbb{N};<,\mathsf{Pow}_2, \mathsf{Fib} \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle$ is decidable assuming Schanuel's conjecture; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_4, \mathsf{N}_2 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{N}_2 \rangle$ is Turing-equivalent to the MSO theory of $\langle \mathbb{N};<,S \rangle$, where $S$ is the predicate corresponding to the binary expansion of $\sqrt{2}$. (As the binary expansion of $\sqrt{2}$ is widely believed to be normal, the corresponding MSO theory is in turn expected to be decidable.) These results are obtained by exploiting and combining techniques from dynamical systems, number theory, and automata theory.

相關內容

A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least $1-1/e$, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted matroid rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.

The $k$-CombDMR problem is that of determining whether an $n \times n$ distance matrix can be realised by $n$ vertices in some undirected graph with $n + k$ vertices. This problem has a simple solution in the case $k=0$. In this paper we show that this problem is polynomial time solvable for $k=1$ and $k=2$. Moreover, we provide algorithms to construct such graph realisations by solving appropriate 2-SAT instances. In the case where $k \geq 3$, this problem is NP-complete. We show this by a reduction of the $k$-colourability problem to the $k$-CombDMR problem. Finally, we discuss the simpler polynomial time solvable problem of tree realisability for a given distance matrix.

This work concerns the minimization of the pseudospectral abscissa of a matrix-valued function dependent on parameters analytically. The problem is motivated by robust stability and transient behavior considerations for a linear control system that has optimization parameters. We describe a subspace procedure to cope with the setting when the matrix-valued function is of large size. The proposed subspace procedure solves a sequence of reduced problems obtained by restricting the matrix-valued function to small subspaces, whose dimensions increase gradually. It possesses desirable features such as a superlinear convergence exhibited by the decay in the errors of the minimizers of the reduced problems. In mathematical terms, the problem we consider is a large-scale nonconvex minimax eigenvalue optimization problem such that the eigenvalue function appears in the constraint of the inner maximization problem. Devising and analyzing a subspace framework for the minimax eigenvalue optimization problem at hand with the eigenvalue function in the constraint require special treatment that makes use of a Lagrangian and dual variables. There are notable advantages in minimizing the pseudospectral abscissa over maximizing the distance to instability or minimizing the $\mathcal{H}_\infty$ norm; the optimized pseudospectral abscissa provides quantitative information about the worst-case transient growth, and the initial guesses for the parameter values to optimize the pseudospectral abscissa can be arbitrary, unlike the case to optimize the distance to instability and $\mathcal{H}_\infty$ norm that would normally require initial guesses yielding asymptotically stable systems.

We formulate discussion graph semantics of first-order logic with equality for reasoning about discussion and argumentation as naturally as we would reason about sentences. While there are a few existing proposals to use a formal logic for reasoning about argumentation, they are constructed bottom-up and specialised to the argumentation model by Dung. There is indeed a conspicuous lack of a formal reasoning framework for handling general discussion and argumentation models. We achieve the generality through a top-down formulation of the semantics of first-order logic (with equality) formulas, addressing the current shortage.

Fractional and tempered fractional partial differential equations (PDEs) are effective models of long-range interactions, anomalous diffusion, and non-local effects. Traditional numerical methods for these problems are mesh-based, thus struggling with the curse of dimensionality (CoD). Physics-informed neural networks (PINNs) offer a promising solution due to their universal approximation, generalization ability, and mesh-free training. In principle, Monte Carlo fractional PINN (MC-fPINN) estimates fractional derivatives using Monte Carlo methods and thus could lift CoD. However, this may cause significant variance and errors, hence affecting convergence; in addition, MC-fPINN is sensitive to hyperparameters. In general, numerical methods and specifically PINNs for tempered fractional PDEs are under-developed. Herein, we extend MC-fPINN to tempered fractional PDEs to address these issues, resulting in the Monte Carlo tempered fractional PINN (MC-tfPINN). To reduce possible high variance and errors from Monte Carlo sampling, we replace the one-dimensional (1D) Monte Carlo with 1D Gaussian quadrature, applicable to both MC-fPINN and MC-tfPINN. We validate our methods on various forward and inverse problems of fractional and tempered fractional PDEs, scaling up to 100,000 dimensions. Our improved MC-fPINN/MC-tfPINN using quadrature consistently outperforms the original versions in accuracy and convergence speed in very high dimensions.

The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.

In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for the parametric polyhedron $P_y$ defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, the function $E_P(y)$ can be represented by a polynomial-time computable function. In turn, such a representation of $E_P(y)$ can be constructed by an $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming again that the number of equalities is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.

Given a finite family $\mathcal{F}$ of graphs, we say that a graph $G$ is "$\mathcal{F}$-free" if $G$ does not contain any graph in $\mathcal{F}$ as a subgraph. A vertex-colored graph $H$ is called "rainbow" if no two vertices of $H$ have the same color. Given an integer $s$ and a finite family of graphs $\mathcal{F}$, let $\ell(s,\mathcal{F})$ denote the smallest integer such that any properly vertex-colored $\mathcal{F}$-free graph $G$ having $\chi(G)\geq\ell(s,\mathcal{F})$ contains an induced rainbow path on $s$ vertices. Scott and Seymour showed that $\ell(s,K)$ exists for every complete graph $K$. A conjecture of N. R. Aravind states that $\ell(s,C_3)=s$. The upper bound on $\ell(s,C_3)$ that can be obtained using the methods of Scott and Seymour setting $K=C_3$ are, however, super-exponential. Gy\'arf\'as and S\'ark\"ozy showed that $\ell(s,\{C_3,C_4\})=\mathcal{O}\big((2s)^{2s}\big)$. For $r\geq 2$, we show that $\ell(s,K_{2,r})\leq (r-1)(s-1)(s-2)/2+s$ and therefore, $\ell(s,C_4)\leq\frac{s^2-s+2}{2}$. This significantly improves Gy\'arf\'as and S\'ark\"ozy's bound and also covers a bigger class of graphs. We adapt our proof to achieve much stronger upper bounds for graphs of higher girth: we prove that $\ell(s,\{C_3,C_4,\ldots,C_{g-1}\})\leq s^{1+\frac{4}{g-4}}$, where $g\geq 5$. Moreover, in each case, our results imply the existence of at least $s!/2$ distinct induced rainbow paths on $s$ vertices. Along the way, we obtain some results on related problems on oriented graphs. For $r\geq 2$, let $\mathcal{B}_r$ denote the orientations of $K_{2,r}$ in which one vertex has out-degree or in-degree $r$. We show that every $\mathcal{B}_r$-free oriented graph $G$ having $\chi(G)\geq (r-1)(s-1)(s-2)+2s+1$ and every bikernel-perfect oriented graph $G$ with girth $g\geq 5$ having $\chi(G)\geq 2s^{1+\frac{4}{g-4}}$ contains every $s$ vertex oriented tree as an induced subgraph.

We prove that for monic polynomials $f, g \in \mathbb{C}[x]$ such that $g$ divides $f$, the $\ell_2$-norm of the quotient polynomial $f/g$ is bounded by $\lVert f \rVert_1 \cdot \tilde{O}(\lVert{g}\rVert_0^3\text{deg}^2{ f})^{\lVert{g}\rVert_0 - 1}$. This improves upon the previously known exponential (in $\text{deg}{ f}$) bounds for general polynomials. Our results implies that the trivial long division algorithm runs in quasi-linear time relative to the input size and number of terms of the quotient polynomial $f/g$, thus solving a long-standing problem on exact divisibility of sparse polynomials. We also study the problem of bounding the number of terms of $f/g$ in some special cases. When $f, g \in \mathbb{Z}[x]$ and $g$ is a cyclotomic-free (i.e., it has no cyclotomic factors) trinomial, we prove that $\lVert{f/g}\rVert_0 \leq O(\lVert{f}\rVert_0 \text{size}({f})^2 \cdot \log^6{\text{deg}{ g}})$. When $g$ is a binomial with $g(\pm 1) \neq 0$, we prove that the sparsity is at most $O(\lVert{f}\rVert_0 ( \log{\lVert{f}\rVert_0} + \log{\lVert{f}\rVert_{\infty}}))$. Both upper bounds are polynomial in the input-size. We leverage these results and give a polynomial time algorithm for deciding whether a cyclotomic-free trinomial divides a sparse polynomial over the integers. As our last result, we present a polynomial time algorithm for testing divisibility by pentanomials over small finite fields when $\text{deg}{ f} = \tilde{O}(\text{deg}{ g})$.

A toric code, introduced by Hansen to extend the Reed-Solomon code as a $k$-dimensional subspace of $\mathbb{F}_q^n$, is determined by a toric variety or its associated integral convex polytope $P \subseteq [0,q-2]^n$, where $k=|P \cap \mathbb{Z}^n|$ (the number of integer lattice points of $P$). There are two relevant parameters that determine the quality of a code: the information rate, which measures how much information is contained in a single bit of each codeword; and the relative minimum distance, which measures how many errors can be corrected relative to how many bits each codeword has. Soprunov and Soprunova defined a good infinite family of codes to be a sequence of codes of unbounded polytope dimension such that neither the corresponding information rates nor relative minimum distances go to 0 in the limit. We examine different ways of constructing families of codes by considering polytope operations such as the join and direct sum. In doing so, we give conditions under which no good family can exist and strong evidence that there is no such good family of codes.

北京阿比特科技有限公司