We analyze composition methods with complex coefficients exhibiting the so-called ``symmetry-conjugate'' pattern in their distribution. In particular, we study their behavior with respect to preservation of qualitative properties when projected on the real axis and we compare them with the usual left-right palindromic compositions. New schemes within this family up to order 8 are proposed and their efficiency is tested on several examples. Our analysis shows that higher-order schemes are more efficient even when time step sizes are relatively large.
Polynomial factorization in conventional sense is an ill-posed problem due to its discontinuity with respect to coefficient perturbations, making it a challenge for numerical computation using empirical data. As a regularization, this paper formulates the notion of numerical factorization based on the geometry of polynomial spaces and the stratification of factorization manifolds. Furthermore, this paper establishes the existence, uniqueness, Lipschitz continuity, condition number, and convergence of the numerical factorization to the underlying exact factorization, leading to a robust and efficient algorithm with a MATLAB implementation capable of accurate polynomial factorizations using floating point arithmetic even if the coefficients are perturbed.
We are interested in the numerical solution of coupled nonlinear partial differential equations (PDEs) in two and three dimensions. Under certain assumptions on the domain, we take advantage of the Kronecker structure arising in standard space discretizations of the differential operators and illustrate how the resulting system of ordinary differential equations (ODEs) can be treated directly in matrix or tensor form. Moreover, in the framework of the proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM) we derive a two- and three-sided model order reduction strategy that is applied directly to the ODE system in matrix and tensor form respectively. We discuss how to integrate the reduced order model and, in particular, how to solve the tensor-valued linear system arising at each timestep of a semi-implicit time discretization scheme. We illustrate the efficiency of the proposed method through a comparison to existing techniques on classical benchmark problems such as the two- and three-dimensional Burgers equation.
In this paper, we theoretically propose a new hashing scheme to establish the sparse Fourier transform in high-dimension space. The estimation of the algorithm complexity shows that this sparse Fourier transform can overcome the curse of dimensionality. To the best of our knowledge, this is the first polynomial-time algorithm to recover the high-dimensional continuous frequencies.
In this work, we introduce a new space-time variational formulation of the second-order wave equation, where integration by parts is also applied with respect to the time variable, and a modified Hilbert transformation is used. For this resulting variational setting, ansatz and test spaces are equal. Thus, conforming finite element discretizations lead to Galerkin--Bubnov schemes. We consider a conforming tensor-product approach with piecewise polynomial, continuous basis functions, which results in an unconditionally stable method, i.e., no CFL condition is required. We give numerical examples for a one- and a two-dimensional spatial domain, where the unconditional stability and optimal convergence rates in space-time norms are illustrated.
In this work we present a class of high order unconditionally strong stability preserving (SSP) implicit multi-derivative Runge--Kutta schemes, and SSP implicit-explicit (IMEX) multi-derivative Runge--Kutta schemes where the time-step restriction is independent of the stiff term. The unconditional SSP property for a method of order $p>2$ is unique among SSP methods, and depends on a backward-in-time assumption on the derivative of the operator. We show that this backward derivative condition is satisfied in many relevant cases where SSP IMEX schemes are desired. We devise unconditionally SSP implicit Runge--Kutta schemes of order up to $p=4$, and IMEX Runge--Kutta schemes of order up to $p=3$. For the multi-derivative IMEX schemes, we also derive and present the order conditions, which have not appeared previously. The unconditional SSP condition ensures that these methods are positivity preserving, and we present sufficient conditions under which such methods are also asymptotic preserving when applied to a range of problems, including a hyperbolic relaxation system, the Broadwell model, and the Bhatnagar-Gross-Krook (BGK) kinetic equation. We present numerical results to support the theoretical results, on a variety of problems.
Graded modal types systems and coeffects are becoming a standard formalism to deal with context-dependent computations where code usage plays a central role. The theory of program equivalence for modal and coeffectful languages, however, is considerably underdeveloped if compared to the denotational and operational semantics of such languages. This raises the question of how much of the theory of ordinary program equivalence can be given in a modal scenario. In this work, we show that coinductive equivalences can be extended to a modal setting, and we do so by generalising Abramsky's applicative bisimilarity to coeffectful behaviours. To achieve this goal, we develop a general theory of ternary program relations based on the novel notion of a comonadic lax extension, on top of which we define a modal extension of Abramsky's applicative bisimilarity (which we dub modal applicative bisimilarity). We prove such a relation to be a congruence, this way obtaining a compositional technique for reasoning about modal and coeffectful behaviours. But this is not the end of the story: we also establish a correspondence between modal program relations and program distances. This correspondence shows that modal applicative bisimilarity and (a properly extended) applicative bisimilarity distance coincide, this way revealing that modal program equivalences and program distances are just two sides of the same coin.
In this paper we study parametric TraceFEM and parametric SurfaceFEM (SFEM) discretizations of a surface Stokes problem. These methods are applied both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A class of higher order methods is presented in a unified framework. Numerical efficiency aspects of the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given. A benchmark problem is introduced in which a scalar reference quantity is defined and numerically determined.
We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.
The flux reconstruction (FR) method has gained popularity in the research community as it recovers promising high-order methods through modally filtered correction fields, such as the discontinuous Galerkin method, amongst others, on unstructured grids over complex geometries. Moreover, FR schemes, specifically energy stable FR (ESFR) schemes also known as Vincent-Castonguay-Jameson-Huynh schemes, have proven attractive as they allow for design flexibility as well as stability proofs for the linear advection problem on affine elements. Additionally, split forms have recently seen a resurgence in research activity due to their resultant nonlinear (entropy) stability proofs. This paper derives for the first time nonlinearly stable ESFR schemes in split form that enable nonlinear stability proofs for, uncollocated, modal, ESFR split forms with different volume and surface cubature nodes. The critical enabling technology is applying the splitting to the discrete stiffness operator. This naturally leads to appropriate surface and numerical fluxes, enabling both entropy stability and conservation proofs. When these schemes are recast in strong form, they differ from schemes found in the ESFR literature as the ESFR correction functions are incorporated on the volume integral. Furthermore, numerical experiments are conducted verifying that the new class of proposed ESFR split forms is nonlinearly stable in contrast to the standard split form ESFR approach. Lastly, the new ESFR split form is shown to obtain the correct orders of accuracy.
Finite volume schemes often have difficulties to resolve the low Mach number (incompressible) limit of the Euler equations. Incompressibility is only non-trivial in multiple spatial dimensions. Low Mach fixes, however generally are applied to the one-dimensional method and the method is then used in a dimensionally split way. This often reduces its stability. Here, it is suggested to keep the one-dimensional method as it is, and only to extend it to multiple dimensions in a particular, all-speed way. This strategy is found to lead to much more stable numerical methods. Apart from the conceptually pleasing property of modifying the scheme only when it becomes necessary, the multi-dimensional all-speed extension also does not include any free parameters or arbitrary functions, which generally are difficult to choose, or might be problem dependent. The strategy is exemplified on a Lagrange Projection method and on a relaxation solver.