亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cloud computing has become a critical infrastructure for modern society, like electric power grids and roads. As the backbone of the modern economy, it offers subscription-based computing services anytime, anywhere, on a pay-as-you-go basis. Its use is growing exponentially with the continued development of new classes of applications driven by a huge number of emerging networked devices. However, the success of Cloud computing has created a new global energy challenge, as it comes at the cost of vast energy usage. Currently, data centres hosting Cloud services world-wide consume more energy than most countries. Globally, by 2025, they are projected to consume 20% of global electricity and emit up to 5.5% of the world's carbon emissions. In addition, a significant part of the energy consumed is transformed into heat which leads to operational problems, including a reduction in system reliability and the life expectancy of devices, and escalation in cooling requirements. Therefore, for future generations of Cloud computing to address the environmental and operational consequences of such significant energy usage, they must become energy-efficient and environmentally sustainable while continuing to deliver high-quality services. In this paper, we propose a vision for learning-centric approach for the integrated management of new generation Cloud computing environments to reduce their energy consumption and carbon footprint while delivering service quality guarantees. In this paper, we identify the dimensions and key issues of integrated resource management and our envisioned approaches to address them. We present a conceptual architecture for energy-efficient new generation Clouds and early results on the integrated management of resources and workloads that evidence its potential benefits towards energy efficiency and sustainability.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Efficient large-scale neural network training and inference on commodity CPU hardware is of immense practical significance in democratizing deep learning (DL) capabilities. Presently, the process of training massive models consisting of hundreds of millions to billions of parameters requires the extensive use of specialized hardware accelerators, such as GPUs, which are only accessible to a limited number of institutions with considerable financial resources. Moreover, there is often an alarming carbon footprint associated with training and deploying these models. In this paper, we take a step towards addressing these challenges by introducing BOLT, a sparse deep learning library for training large-scale search and recommendation models on standard CPU hardware. BOLT provides a flexible, high-level API for constructing models that will be familiar to users of existing popular DL frameworks. By automatically tuning specialized hyperparameters, BOLT also abstracts away the algorithmic details of sparse network training. We evaluate BOLT on a number of information retrieval tasks including product recommendations, text classification, graph neural networks, and personalization. We find that our proposed system achieves competitive performance with state-of-the-art techniques at a fraction of the cost and energy consumption and an order-of-magnitude faster inference time. BOLT has also been successfully deployed by multiple businesses to address critical problems, and we highlight one customer case study in the field of e-commerce.

Despite their potential, markerless hand tracking technologies are not yet applied in practice to the diagnosis or monitoring of the activity in inflammatory musculoskeletal diseases. One reason is that the focus of most methods lies in the reconstruction of coarse, plausible poses, whereas in the clinical context, accurate, interpretable, and reliable results are required. Therefore, we propose ShaRPy, the first RGB-D Shape Reconstruction and hand Pose tracking system, which provides uncertainty estimates of the computed pose, e.g., when a finger is hidden or its estimate is inconsistent with the observations in the input, to guide clinical decision-making. Besides pose, ShaRPy approximates a personalized hand shape, promoting a more realistic and intuitive understanding of its digital twin. Our method requires only a light-weight setup with a single consumer-level RGB-D camera yet it is able to distinguish similar poses with only small joint angle deviations in a metrically accurate space. This is achieved by combining a data-driven dense correspondence predictor with traditional energy minimization. To bridge the gap between interactive visualization and biomedical simulation we leverage a parametric hand model in which we incorporate biomedical constraints and optimize for both, its pose and hand shape. We evaluate ShaRPy on a keypoint detection benchmark and show qualitative results of hand function assessments for activity monitoring of musculoskeletal diseases.

Semantic segmentation is a common task in autonomous driving to understand the surrounding environment. Driveable Area Segmentation and Lane Detection are particularly important for safe and efficient navigation on the road. However, original semantic segmentation models are computationally expensive and require high-end hardware, which is not feasible for embedded systems in autonomous vehicles. This paper proposes a lightweight model for the driveable area and lane line segmentation. TwinLiteNet is designed cheaply but achieves accurate and efficient segmentation results. We evaluate TwinLiteNet on the BDD100K dataset and compare it with modern models. Experimental results show that our TwinLiteNet performs similarly to existing approaches, requiring significantly fewer computational resources. Specifically, TwinLiteNet achieves a mIoU score of 91.3% for the Drivable Area task and 31.08% IoU for the Lane Detection task with only 0.4 million parameters and achieves 415 FPS on GPU RTX A5000. Furthermore, TwinLiteNet can run in real-time on embedded devices with limited computing power, especially since it achieves 60FPS on Jetson Xavier NX, making it an ideal solution for self-driving vehicles. Code is available: url{//github.com/chequanghuy/TwinLiteNet}.

The rapid development of Blockchain technology and the prosperity of cryptocurrency in the past decade have driven the massive demand for digital assets trading, leading to the emergence of many cryptocurrency exchange platforms. Unlike centralised exchanges (CEXs) where listed tokens and cryptocurrencies are assessed by authorities to make the secured trading environment, decentralized exchanges (DEXs) are introduced to allow users to trade their digital assets without the involvement of any third party, therefore exposing security issues and encouraging the rise of many scams and malicious tokens. In this paper, we investigate an emerging malicious token named Trapdoor, which allows users to buy but prevent them from selling and getting their funds back. The first collection of Trapdoor tokens is constructed in this study by investigating malicious behaviours and maneuvers of these tokens. After manually analysing the tokens' source code, we classify those Trapdoor tokens into different categories according to their malicious code embedding technique. Moreover, we also comprehensively analyse the impact of Trapdoor tokens, the behaviours of scammers, and the characteristics of victims from various perspective. Finally, we also implement and publish our Trapdoor token detection tool and Trapdoor maneuvers analysis reports that help in increasing awareness of investors for this kind of scam.

To effectively process data across a fleet of dynamic and distributed vehicles, it is crucial to implement resource provisioning techniques that provide reliable, cost-effective, and real-time computing services. This article explores resource provisioning for computation-intensive tasks over mobile vehicular clouds (MVCs). We use undirected weighted graphs (UWGs) to model both the execution of tasks and communication patterns among vehicles in a MVC. We then study low-latency and reliable scheduling of UWG asks through a novel methodology named double-plan-promoted isomorphic subgraph search and optimization (DISCO). In DISCO, two complementary plans are envisioned to ensure effective task completion: Plan A and Plan B. Plan A analyzes the past data to create an optimal mapping ($\alpha$) between tasks and the MVC in advance to the practical task scheduling. Plan B serves as a dependable backup, designed to find a feasible mapping ($\beta$) in case $\alpha$ fails during task scheduling due to unpredictable nature of the network.We delve into into DISCO's procedure and key factors that contribute to its success. Additionally, we provide a case study to demonstrate DISCO's commendable performance in regards to time efficiency and overhead. We further discuss a series of open directions for future research.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司