We develop a new permutation test for inference on a subvector of coefficients in linear models. The test is exact when the regressors and the error terms are independent. Then, we show that the test is asymptotically of correct level, consistent and has power against local alternatives when the independence condition is relaxed, under two main conditions. The first is a slight reinforcement of the usual absence of correlation between the regressors and the error term. The second is that the number of strata, defined by values of the regressors not involved in the subvector test, is small compared to the sample size. The latter implies that the vector of nuisance regressors is discrete. Simulations and empirical illustrations suggest that the test has good power in practice if, indeed, the number of strata is small compared to the sample size.
Selective inference (SI) has been actively studied as a promising framework for statistical hypothesis testing for data-driven hypotheses. The basic idea of SI is to make inferences conditional on an event that a hypothesis is selected. In order to perform SI, this event must be characterized in a traceable form. When selection event is too difficult to characterize, additional conditions are introduced for tractability. This additional conditions often causes the loss of power, and this issue is referred to as over-conditioning. Parametric programming-based SI (PP-based SI) has been proposed as one way to address the over-conditioning issue. The main problem of PP-based SI is its high computational cost due to the need to exhaustively explore the data space. In this study, we introduce a procedure to reduce the computational cost while guaranteeing the desired precision, by proposing a method to compute the upper and lower bounds of p-values. We also proposed three types of search strategies that efficiently improve these bounds. We demonstrate the effectiveness of the proposed method in hypothesis testing problems for feature selection in linear models and attention region identification in deep neural networks.
Principal Component Analysis (PCA) is a fundamental tool for data visualization, denoising, and dimensionality reduction. It is widely popular in Statistics, Machine Learning, Computer Vision, and related fields. However, PCA is well-known to fall prey to outliers and often fails to detect the true underlying low-dimensional structure within the dataset. Following the Median of Means (MoM) philosophy, recent supervised learning methods have shown great success in dealing with outlying observations without much compromise to their large sample theoretical properties. This paper proposes a PCA procedure based on the MoM principle. Called the \textbf{M}edian of \textbf{M}eans \textbf{P}rincipal \textbf{C}omponent \textbf{A}nalysis (MoMPCA), the proposed method is not only computationally appealing but also achieves optimal convergence rates under minimal assumptions. In particular, we explore the non-asymptotic error bounds of the obtained solution via the aid of the Rademacher complexities while granting absolutely no assumption on the outlying observations. The derived concentration results are not dependent on the dimension because the analysis is conducted in a separable Hilbert space, and the results only depend on the fourth moment of the underlying distribution in the corresponding norm. The proposal's efficacy is also thoroughly showcased through simulations and real data applications.
This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension d; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself, and propose a simple stopping rule applicable to any optimization method which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.
We investigate covert communication over general memoryless classical-quantum channels with fixed finite-size input alphabets. We show that the square root law (SRL) governs covert communication in this setting when product of $n$ input states is used: $L_{\rm SRL}\sqrt{n}+o(\sqrt{n})$ covert bits (but no more) can be reliably transmitted in $n$ uses of classical-quantum channel, where $L_{\rm SRL}>0$ is a channel-dependent constant that we call covert capacity. We also show that ensuring covertness requires $J_{\rm SRL}\sqrt{n}+o(\sqrt{n})$ bits secret shared by the communicating parties prior to transmission, where $J_{\rm SRL}\geq0$ is a channel-dependent constant. We assume a quantum-powerful adversary that can perform an arbitrary joint (entangling) measurement on all $n$ channel uses. We determine the single-letter expressions for $L_{\rm SRL}$ and $J_{\rm SRL}$, and establish conditions when $J_{\rm SRL}=0$ (i.e., no pre-shared secret is needed). Finally, we evaluate the scenarios where covert communication is not governed by the SRL.
This work presents a non-parametric estimator for the cumulative distribution function (CDF) of the jump-size distribution for a storage system with compound Poisson input. The workload process is observed according to an independent Poisson sampling process. The nonparametric estimator is constructed by first estimating the characteristic function (CF) and then applying an inversion formula. The convergence rate of the CF estimator at $s$ is shown to be of the order of $s^2/n$, where $n$ is the sample size. This convergence rate is leveraged to explore the bias-variance tradeoff of the inversion estimator. It is demonstrated that within a certain class of continuous distributions, the risk, in terms of MSE, is uniformly bounded by $C n^{-\frac{\eta}{1+\eta}}$, where $C$ is a positive constant and the parameter $\eta>0$ depends on the smoothness of the underlying class of distributions. A heuristic method is further developed to address the case of an unknown rate of the compound Poisson input process.
Obtaining accurate probabilistic forecasts while respecting hierarchical information is an important operational challenge in many applications, perhaps most obviously in energy management, supply chain planning, and resource allocation. The basic challenge, especially for multivariate forecasting, is that forecasts are often required to be coherent with respect to the hierarchical structure. In this paper, we propose a new model which leverages a factor model structure to produce coherent forecasts by construction. This is a consequence of a simple (exchangeability) observation: permuting \textit{}base-level series in the hierarchy does not change their aggregates. Our model uses a convolutional neural network to produce parameters for the factors, their loadings and base-level distributions; it produces samples which can be differentiated with respect to the model's parameters; and it can therefore optimize for any sample-based loss function, including the Continuous Ranked Probability Score and quantile losses. We can choose arbitrary continuous distributions for the factor and the base-level distributions. We compare our method to two previous methods which can be optimized end-to-end, while enforcing coherent aggregation. Our model achieves significant improvements: between $11.8-41.4\%$ on three hierarchical forecasting datasets. We also analyze the influence of parameters in our model with respect to base-level distribution and number of factors.
The central problem we address in this work is estimation of the parameter support set S, the set of indices corresponding to nonzero parameters, in the context of a sparse parametric likelihood model for count-valued multivariate time series. We develop a computationally-intensive algorithm that performs the estimation by aggregating support sets obtained by applying the LASSO to data subsamples. Our approach is to identify several well-fitting candidate models and estimate S by the most frequently-used parameters, thus \textit{aggregating} candidate models rather than selecting a single candidate deemed optimal in some sense. While our method is broadly applicable to any selection problem, we focus on the generalized vector autoregressive model class, and in particular the Poisson case, due to (i) the difficulty of the support estimation problem due to complex dependence in the data, (ii) recent work applying the LASSO in this context, and (iii) interesting applications in network recovery from discrete multivariate time series. We establish benchmark methods based on the LASSO and present empirical results demonstrating the superior performance of our method. Additionally, we present an application estimating ecological interaction networks from paleoclimatology data.
Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality of heuristic approaches and the tremendous improvements in mixed-integer optimization (MIO) technology. Yet, existing MIO-based approaches from the literature do not leverage the power of MIO to its full extent: they rely on weak formulations, resulting in slow convergence and large optimality gaps. To fill this gap in the literature, we propose an intuitive flow-based MIO formulation for learning optimal binary classification trees. Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees. Moreover, we show that our formulation has a stronger linear optimization relaxation than existing methods in the case of binary data. We exploit the decomposable structure of our formulation and max-flow/min-cut duality to derive a Benders' decomposition method to speed-up computation. We propose a tailored procedure for solving each decomposed subproblem that provably generates facets of the feasible set of the MIO as constraints to add to the main problem. We conduct extensive computational experiments on standard benchmark datasets on which we show that our proposed approaches are 29 times faster than state-of-the-art MIO-based techniques and improve out-of-sample performance by up to 8%.
The integer autoregressive (INAR) model is one of the most commonly used models in nonnegative integer-valued time series analysis and is a counterpart to the traditional autoregressive model for continuous-valued time series. To guarantee the integer-valued nature, the binomial thinning operator or more generally the generalized Steutel and van Harn operator is used to define the INAR model. However, the distributions of the counting sequences used in the operators have been determined by the preference of analyst without statistical verification so far. In this paper, we propose a test based on the mean and variance relationships for distributions of counting sequences and a disturbance process to check if the operator is reasonable. We show that our proposed test has asymptotically correct size and is consistent. Numerical simulation is carried out to evaluate the finite sample performance of our test. As a real data application, we apply our test to the monthly number of anorexia cases in animals submitted to animal health laboratories in New Zealand and we conclude that binomial thinning operator is not appropriate.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.