亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Electronic health records and other sources of observational data are increasingly used for drawing causal inferences. The estimation of a causal effect using these data not meant for research purposes is subject to confounding and irregular covariate-driven observation times affecting the inference. A doubly-weighted estimator accounting for these features has previously been proposed that relies on the correct specification of two nuisance models used for the weights. In this work, we propose a novel consistent quadruply robust estimator and demonstrate analytically and in large simulation studies that it is more flexible and more efficient than its only proposed alternative. It is further applied to data from the Add Health study in the United States to estimate the causal effect of therapy counselling on alcohol consumption in American adolescents.

相關內容

Concerns have been raised about possible cancer risks after exposure to computed tomography (CT) scans in childhood. The health effects of ionizing radiation are then estimated from the absorbed dose to the organs of interest which is calculated, for each CT scan, from dosimetric numerical models, like the one proposed in the NCICT software. Given that a dosimetric model depends on input parameters which are most often uncertain, the calculation of absorbed doses is inherently uncertain. A current methodological challenge in radiation epidemiology is thus to be able to account for dose uncertainty in risk estimation. A preliminary important step can be to identify the most influential input parameters implied in dose estimation, before modelling and accounting for their related uncertainty in radiation-induced health risks estimates. In this work, a variance-based global sensitivity analysis was performed to rank by influence the uncertain input parameters of the NCICT software implied in brain and red bone marrow doses estimation, for four classes of CT examinations. Two recent sensitivity indices, especially adapted to the case of dependent input parameters, were estimated, namely: the Shapley effects and the Proportional Marginal Effects (PME). This provides a first comparison of the respective behavior and usefulness of these two indices on a real medical application case. The conclusion is that Shapley effects and PME are intrinsically different, but complementary. Interestingly, we also observed that the proportional redistribution property of the PME allowed for a clearer importance hierarchy between the input parameters.

Popularity bias is a persistent issue associated with recommendation systems, posing challenges to both fairness and efficiency. Existing literature widely acknowledges that reducing popularity bias often requires sacrificing recommendation accuracy. In this paper, we challenge this commonly held belief. Our analysis under general bias-variance decomposition framework shows that reducing bias can actually lead to improved model performance under certain conditions. To achieve this win-win situation, we propose to intervene in model training through negative sampling thereby modifying model predictions. Specifically, we provide an optimal negative sampling rule that maximizes partial AUC to preserve the accuracy of any given model, while correcting sample information and prior information to reduce popularity bias in a flexible and principled way. Our experimental results on real-world datasets demonstrate the superiority of our approach in improving recommendation performance and reducing popularity bias.

Covert communication has become an important area of research in computer security. It involves hiding specific information on a carrier for message transmission and is often used to transmit private data, military secrets, and even malware. In deep learning, many methods have been developed for hiding information in models to achieve covert communication. However, these methods are not applicable to federated learning, where model aggregation invalidates the exact information embedded in the model by the client. To address this problem, we propose a novel method for covert communication in federated learning based on the poisoning attack. Our approach achieves 100% accuracy in covert message transmission between two clients and is shown to be both stealthy and robust through extensive experiments. However, existing defense methods are limited in their effectiveness against our attack scheme, highlighting the urgent need for new protection methods to be developed. Our study emphasizes the necessity of research in covert communication and serves as a foundation for future research in federated learning attacks and defenses.

The task of mixture proportion estimation (MPE) is to estimate the weight of a component distribution in a mixture, given observations from both the component and mixture. Previous work on MPE adopts the irreducibility assumption, which ensures identifiablity of the mixture proportion. In this paper, we propose a more general sufficient condition that accommodates several settings of interest where irreducibility does not hold. We further present a resampling-based meta-algorithm that takes any existing MPE algorithm designed to work under irreducibility and adapts it to work under our more general condition. Our approach empirically exhibits improved estimation performance relative to baseline methods and to a recently proposed regrouping-based algorithm.

Large datasets are often affected by cell-wise outliers in the form of missing or erroneous data. However, discarding any samples containing outliers may result in a dataset that is too small to accurately estimate the covariance matrix. Moreover, most robust procedures designed to address this problem are not effective on high-dimensional data as they rely crucially on invertibility of the covariance operator. In this paper, we propose an unbiased estimator for the covariance in the presence of missing values that does not require any imputation step and still achieves minimax statistical accuracy with the operator norm. We also advocate for its use in combination with cell-wise outlier detection methods to tackle cell-wise contamination in a high-dimensional and low-rank setting, where state-of-the-art methods may suffer from numerical instability and long computation times. To complement our theoretical findings, we conducted an experimental study which demonstrates the superiority of our approach over the state of the art both in low and high dimension settings.

Density estimation based anomaly detection schemes typically model anomalies as examples that reside in low-density regions. We propose a modified density estimation problem and demonstrate its effectiveness for anomaly detection. Specifically, we assume the density function of normal samples is uniform in some compact domain. This assumption implies the density function is more stable (with lower variance) around normal samples than anomalies. We first corroborate this assumption empirically using a wide range of real-world data. Then, we design a variance stabilized density estimation problem for maximizing the likelihood of the observed samples while minimizing the variance of the density around normal samples. We introduce an ensemble of autoregressive models to learn the variance stabilized distribution. Finally, we perform an extensive benchmark with 52 datasets demonstrating that our method leads to state-of-the-art results while alleviating the need for data-specific hyperparameter tuning.

Animal pose estimation has become a crucial area of research, but the scarcity of annotated data is a significant challenge in developing accurate models. Synthetic data has emerged as a promising alternative, but it frequently exhibits domain discrepancies with real data. Style transfer algorithms have been proposed to address this issue, but they suffer from insufficient spatial correspondence, leading to the loss of label information. In this work, we present a new approach called Synthetic Pose-aware Animal ControlNet (SPAC-Net), which incorporates ControlNet into the previously proposed Prior-Aware Synthetic animal data generation (PASyn) pipeline. We leverage the plausible pose data generated by the Variational Auto-Encoder (VAE)-based data generation pipeline as input for the ControlNet Holistically-nested Edge Detection (HED) boundary task model to generate synthetic data with pose labels that are closer to real data, making it possible to train a high-precision pose estimation network without the need for real data. In addition, we propose the Bi-ControlNet structure to separately detect the HED boundary of animals and backgrounds, improving the precision and stability of the generated data. Using the SPAC-Net pipeline, we generate synthetic zebra and rhino images and test them on the AP10K real dataset, demonstrating superior performance compared to using only real images or synthetic data generated by other methods. Our work demonstrates the potential for synthetic data to overcome the challenge of limited annotated data in animal pose estimation.

Generative Flow Networks (GFlowNets), a class of generative models over discrete and structured sample spaces, have been previously applied to the problem of inferring the marginal posterior distribution over the directed acyclic graph (DAG) of a Bayesian Network, given a dataset of observations. Based on recent advances extending this framework to non-discrete sample spaces, we propose in this paper to approximate the joint posterior over not only the structure of a Bayesian Network, but also the parameters of its conditional probability distributions. We use a single GFlowNet whose sampling policy follows a two-phase process: the DAG is first generated sequentially one edge at a time, and then the corresponding parameters are picked once the full structure is known. Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models of the Bayesian Network, making our approach applicable even to non-linear models parametrized by neural networks. We show that our method, called JSP-GFN, offers an accurate approximation of the joint posterior, while comparing favorably against existing methods on both simulated and real data.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司