亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Using tools developed in a recent work by Shen and the second author, in this paper we carry out an in-depth study on the average decoding error probability of the random matrix ensemble over the erasure channel under three decoding principles, namely unambiguous decoding, maximum likelihood decoding and list decoding. We obtain explicit formulas for the average decoding error probabilities of the random matrix ensemble under these three decoding principles and compute the error exponents. Moreover, for unambiguous decoding, we compute the variance of the decoding error probability of the random matrix ensemble and the error exponent of the variance, which imply a strong concentration result, that is, roughly speaking, the ratio of the decoding error probability of a random code in the ensemble and the average decoding error probability of the ensemble converges to 1 with high probability when the code length goes to infinity.

相關內容

In this paper, we propose a new set of midpoint-based high-order discretization schemes for computing straight and mixed nonlinear second derivative terms that appear in the compressible Navier-Stokes equations. Firstly, we detail a set of conventional fourth and sixth-order baseline schemes that utilize central midpoint derivatives for the calculation of second derivatives terms. To enhance the spectral properties of the baseline schemes, an optimization procedure is proposed that adjusts the order and truncation error of the midpoint derivative approximation while still constraining the same overall stencil width and scheme order. A new filter penalty term is introduced into the midpoint derivative calculation to help achieve high wavenumber accuracy and high-frequency damping in the mixed derivative discretization. Fourier analysis performed on the both straight and mixed second derivative terms show high spectral efficiency and minimal numerical viscosity with no odd-even decoupling effect. Numerical validation of the resulting optimized schemes is performed through various benchmark test cases assessing their theoretical order of accuracy and solution resolution. The results highlight that the present optimized schemes efficiently utilize the inherent viscosity of the governing equations to achieve improved simulation stability - a feature attributed to their superior spectral resolution in the high wavenumber range. The method is also tested and applied to non-uniform structured meshes in curvilinear coordinates, employing a supersonic impinging jet test case.

This paper studies a beam tracking problem in which an access point (AP), in collaboration with a reconfigurable intelligent surface (RIS), dynamically adjusts its downlink beamformers and the reflection pattern at the RIS in order to maintain reliable communications with multiple mobile user equipments (UEs). Specifically, the mobile UEs send uplink pilots to the AP periodically during the channel sensing intervals, the AP then adaptively configures the beamformers and the RIS reflection coefficients for subsequent data transmission based on the received pilots. This is an active sensing problem, because channel sensing involves configuring the RIS coefficients during the pilot stage and the optimal sensing strategy should exploit the trajectory of channel state information (CSI) from previously received pilots. Analytical solution to such an active sensing problem is very challenging. In this paper, we propose a deep learning framework utilizing a recurrent neural network (RNN) to automatically summarize the time-varying CSI obtained from the periodically received pilots into state vectors. These state vectors are then mapped to the AP beamformers and RIS reflection coefficients for subsequent downlink data transmissions, as well as the RIS reflection coefficients for the next round of uplink channel sensing. The mappings from the state vectors to the downlink beamformers and the RIS reflection coefficients for both channel sensing and downlink data transmission are performed using graph neural networks (GNNs) to account for the interference among the UEs. Simulations demonstrate significant and interpretable performance improvement of the proposed approach over the existing data-driven methods with nonadaptive channel sensing schemes.

The remarkable instruction-following capability of large language models (LLMs) has sparked a growing interest in automatically finding good prompts, i.e., prompt optimization. Most existing works follow the scheme of selecting from a pre-generated pool of candidate prompts. However, these designs mainly focus on the generation strategy, while limited attention has been paid to the selection method. Especially, the cost incurred during the selection (e.g., accessing LLM and evaluating the responses) is rarely explicitly considered. To overcome this limitation, this work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint. TRIPLE is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB); thus, it is capable of leveraging the rich toolbox from BAI-FB systematically and also incorporating unique characteristics of prompt optimization. Extensive experiments on multiple well-adopted tasks using various LLMs demonstrate the remarkable performance improvement of TRIPLE over baselines while satisfying the limited budget constraints. As an extension, variants of TRIPLE are proposed to efficiently select examples for few-shot prompts, also achieving superior empirical performance.

This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.

This paper consists of three parts. The first part provides a unified programming model for heterogeneous computing with CPU and accelerator (like GPU, FPGA, Google TPU, Atos QPU, and more) technologies. To some extent, this new programming model makes programming across CPUs and accelerators turn into usual programming tasks with common programming languages, and relieves complexity of programming across CPUs and accelerators. It can be achieved by extending file managements in common programming languages, such as C/C++, Fortran, Python, MPI, etc., to cover accelerators as I/O devices. In the second part, we show that all types of computer systems can be reduced to the simplest type of computer system, a single-core CPU computer system with I/O devices, by the unified programming model. Thereby, the unified programming model can truly build the programming of various computer systems on one API (i.e. file managements of common programming languages), and can make programming for various computer systems easier. In third part, we present a new approach to coupled applications computing (like multidisciplinary simulations) by the unified programming model. The unified programming model makes coupled applications computing more natural and easier since it only relies on its own power to couple multiple applications through MPI.

The paper describes several applications of information inequalities to problems in database theory. The problems discussed include: upper bounds of a query's output, worst-case optimal join algorithms, the query domination problem, and the implication problem for approximate integrity constraints. The paper is self-contained: all required concepts and results from information inequalities are introduced here, gradually, and motivated by database problems.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司