Human mesh recovery (HMR) provides rich human body information for various real-world applications such as gaming, human-computer interaction, and virtual reality. Compared to single image-based methods, video-based methods can utilize temporal information to further improve performance by incorporating human body motion priors. However, many-to-many approaches such as VIBE suffer from motion smoothness and temporal inconsistency. While many-to-one approaches such as TCMR and MPS-Net rely on the future frames, which is non-causal and time inefficient during inference. To address these challenges, a novel Diffusion-Driven Transformer-based framework (DDT) for video-based HMR is presented. DDT is designed to decode specific motion patterns from the input sequence, enhancing motion smoothness and temporal consistency. As a many-to-many approach, the decoder of our DDT outputs the human mesh of all the frames, making DDT more viable for real-world applications where time efficiency is crucial and a causal model is desired. Extensive experiments are conducted on the widely used datasets (Human3.6M, MPI-INF-3DHP, and 3DPW), which demonstrated the effectiveness and efficiency of our DDT.
We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at //github.com/cbsropenproject/6dof_face.
In the field of deep learning applied to face recognition, securing large-scale, high-quality datasets is vital for attaining precise and reliable results. However, amassing significant volumes of high-quality real data faces hurdles such as time limitations, financial burdens, and privacy issues. Furthermore, prevalent datasets are often impaired by racial biases and annotation inaccuracies. In this paper, we underscore the promising application of synthetic data, generated through rendering digital faces via our computer graphics pipeline, in achieving competitive results with the state-of-the-art on synthetic data across multiple benchmark datasets. By finetuning the model,we obtain results that rival those achieved when training with hundreds of thousands of real images (98.7% on LFW [1]). We further investigate the contribution of adding intra-class variance factors (e.g., makeup, accessories, haircuts) on model performance. Finally, we reveal the sensitivity of pre-trained face recognition models to alternating specific parts of the face by leveraging the granular control capability in our platform.
Text-guided human motion generation has drawn significant interest because of its impactful applications spanning animation and robotics. Recently, application of diffusion models for motion generation has enabled improvements in the quality of generated motions. However, existing approaches are limited by their reliance on relatively small-scale motion capture data, leading to poor performance on more diverse, in-the-wild prompts. In this paper, we introduce Make-An-Animation, a text-conditioned human motion generation model which learns more diverse poses and prompts from large-scale image-text datasets, enabling significant improvement in performance over prior works. Make-An-Animation is trained in two stages. First, we train on a curated large-scale dataset of (text, static pseudo-pose) pairs extracted from image-text datasets. Second, we fine-tune on motion capture data, adding additional layers to model the temporal dimension. Unlike prior diffusion models for motion generation, Make-An-Animation uses a U-Net architecture similar to recent text-to-video generation models. Human evaluation of motion realism and alignment with input text shows that our model reaches state-of-the-art performance on text-to-motion generation.
Image quality assessment is a fundamental problem in the field of image processing, and due to the lack of reference images in most practical scenarios, no-reference image quality assessment (NR-IQA), has gained increasing attention recently. With the development of deep learning technology, many deep neural network-based NR-IQA methods have been developed, which try to learn the image quality based on the understanding of database information. Currently, Transformer has achieved remarkable progress in various vision tasks. Since the characteristics of the attention mechanism in Transformer fit the global perceptual impact of artifacts perceived by a human, Transformer is thus well suited for image quality assessment tasks. In this paper, we propose a Transformer based NR-IQA model using a predicted objective error map and perceptual quality token. Specifically, we firstly generate the predicted error map by pre-training one model consisting of a Transformer encoder and decoder, in which the objective difference between the distorted and the reference images is used as supervision. Then, we freeze the parameters of the pre-trained model and design another branch using the vision Transformer to extract the perceptual quality token for feature fusion with the predicted error map. Finally, the fused features are regressed to the final image quality score. Extensive experiments have shown that our proposed method outperforms the current state-of-the-art in both authentic and synthetic image databases. Moreover, the attentional map extracted by the perceptual quality token also does conform to the characteristics of the human visual system.
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.