Learning-based approaches for controlling safety-critical systems are rapidly growing in popularity; thus, it is important to assure their performance and safety. Hamilton-Jacobi (HJ) reachability analysis is a popular formal verification tool for providing such guarantees, since it can handle general nonlinear system dynamics, bounded adversarial system disturbances, and state and input constraints. However, its computational and memory complexity scales exponentially with the state dimension, making it intractable for large-scale systems. To overcome this challenge, neural approaches, such as DeepReach, have been used to synthesize reachable tubes and safety controllers for high-dimensional systems. However, verifying these neural reachable tubes remains challenging. In this work, we propose two verification methods, based on robust scenario optimization and conformal prediction, to provide probabilistic safety guarantees for neural reachable tubes. Our methods allow a direct trade-off between resilience to outlier errors in the neural tube, which are inevitable in a learning-based approach, and the strength of the probabilistic safety guarantee. Furthermore, we show that split conformal prediction, a widely used method in the machine learning community for uncertainty quantification, reduces to a scenario-based approach, making the two methods equivalent not only for verification of neural reachable tubes but also more generally. To our knowledge, our proof is the first in the literature to show a strong relationship between conformal prediction and scenario optimization. Finally, we propose an outlier-adjusted verification approach that uses the error distribution in neural reachable tubes to recover greater safe volumes. We demonstrate the efficacy of the proposed approaches for the high-dimensional problems of multi-vehicle collision avoidance and rocket landing with no-go zones.
With the booming popularity of smartphones, threats related to these devices are increasingly on the rise. Smishing, a combination of SMS (Short Message Service) and phishing has emerged as a treacherous cyber threat used by malicious actors to deceive users, aiming to steal sensitive information, money or install malware on their mobile devices. Despite the increase in smishing attacks in recent years, there are very few studies aimed at understanding the factors that contribute to a user's ability to differentiate real from fake messages. To address this gap in knowledge, we have conducted an online survey on smishing detection with 214 participants. In this study, we presented them with 16 SMS screenshots and evaluated how different factors affect their decision making process in smishing detection. Next, we conducted a follow-up survey to garner information on the participants' security attitudes, behavior and knowledge. Our results highlighted that attention and security behavioral scores had a significant impact on participants' accuracy in identifying smishing messages. Interestingly, we found that participants had more difficulty identifying real messages from fake ones, with an accuracy of 65.6% with fake messages and 44.6% with real messages. Our study is crucial in developing proactive strategies to encounter and mitigate smishing attacks. By understanding what factors influence smishing detection, we aim to bolster users' resilience against such threats and create a safer digital environment for all.
Recent developments enable the quantification of causal control given a structural causal model (SCM). This has been accomplished by introducing quantities which encode changes in the entropy of one variable when intervening on another. These measures, named causal entropy and causal information gain, aim to address limitations in existing information theoretical approaches for machine learning tasks where causality plays a crucial role. They have not yet been properly mathematically studied. Our research contributes to the formal understanding of the notions of causal entropy and causal information gain by establishing and analyzing fundamental properties of these concepts, including bounds and chain rules. Furthermore, we elucidate the relationship between causal entropy and stochastic interventions. We also propose definitions for causal conditional entropy and causal conditional information gain. Overall, this exploration paves the way for enhancing causal machine learning tasks through the study of recently-proposed information theoretic quantities grounded in considerations about causality.
The use of multimodal imaging has led to significant improvements in the diagnosis and treatment of many diseases. Similar to clinical practice, some works have demonstrated the benefits of multimodal fusion for automatic segmentation and classification using deep learning-based methods. However, current segmentation methods are limited to fusion of modalities with the same dimensionality (e.g., 3D+3D, 2D+2D), which is not always possible, and the fusion strategies implemented by classification methods are incompatible with localization tasks. In this work, we propose a novel deep learning-based framework for the fusion of multimodal data with heterogeneous dimensionality (e.g., 3D+2D) that is compatible with localization tasks. The proposed framework extracts the features of the different modalities and projects them into the common feature subspace. The projected features are then fused and further processed to obtain the final prediction. The framework was validated on the following tasks: segmentation of geographic atrophy (GA), a late-stage manifestation of age-related macular degeneration, and segmentation of retinal blood vessels (RBV) in multimodal retinal imaging. Our results show that the proposed method outperforms the state-of-the-art monomodal methods on GA and RBV segmentation by up to 3.10% and 4.64% Dice, respectively.
Because of their excellent asymptotic and finite-length performance, spatially-coupled (SC) codes are a class of low-density parity-check codes that is gaining increasing attention. Multi-dimensional (MD) SC codes are constructed by connecting copies of an SC code via relocations in order to mitigate various sources of non-uniformity and improve performance in many data storage and data transmission systems. As the number of degrees of freedom in the MD-SC code design increases, appropriately exploiting them becomes more difficult because of the complexity growth of the design process. In this paper, we propose a probabilistic framework for the MD-SC code design, which is based on the gradient-descent (GD) algorithm, to design better MD codes and address this challenge. In particular, we express the expected number of short cycles, which we seek to minimize, in the graph representation of the code in terms of entries of a probability-distribution matrix that characterizes the MD-SC code design. We then find a locally-optimal probability distribution, which serves as the starting point of a finite-length algorithmic optimizer that produces the final MD-SC code. We offer the theoretical analysis as well as the algorithms, and we present experimental results demonstrating that our MD codes, conveniently called GD-MD codes, have notably lower short cycle numbers compared with the available state-of-the-art. Moreover, our algorithms converge on solutions in few iterations, which confirms the complexity reduction as a result of limiting the search space via the locally-optimal GD-MD distributions.
In the exascale era in which application behavior has large power & energy footprints, per-application job-level awareness of such impression is crucial in taking steps towards achieving efficiency goals beyond performance, such as energy efficiency, and sustainability. To achieve these goals, we have developed a novel low-latency job power profiling machine learning pipeline that can group job-level power profiles based on their shapes as they complete. This pipeline leverages a comprehensive feature extraction and clustering pipeline powered by a generative adversarial network (GAN) model to handle the feature-rich time series of job-level power measurements. The output is then used to train a classification model that can predict whether an incoming job power profile is similar to a known group of profiles or is completely new. With extensive evaluations, we demonstrate the effectiveness of each component in our pipeline. Also, we provide a preliminary analysis of the resulting clusters that depict the power profile landscape of the Summit supercomputer from more than 60K jobs sampled from the year 2021.
Hardware security is an important concern of system security as vulnerabilities can arise from design errors introduced throughout the development lifecycle. Recent works have proposed techniques to detect hardware security bugs, such as static analysis, fuzzing, and symbolic execution. However, the fundamental properties of hardware security bugs remain relatively unexplored. To gain a better understanding of hardware security bugs, we perform a deep dive into the popular OpenTitan project, including its bug reports and bug fixes. We manually classify the bugs as relevant to functionality or security and analyze characteristics, such as the impact and location of security bugs, and the size of their bug fixes. We also investigate relationships between security impact and bug management during development. Finally, we propose an abstract syntax tree-based analysis to identify the syntactic characteristics of bug fixes. Our results show that 53% of the bugs in OpenTitan have potential security implications and that 55% of all bug fixes modify only one file. Our findings underscore the importance of security-aware development practices and tools and motivate the development of techniques that leverage the highly localized nature of hardware bugs.
Modern software engineering builds up on the composability of software components, that rely on more and more direct and transitive dependencies to build their functionalities. This principle of reusability however makes it harder to reproduce projects' build environments, even though reproducibility of build environments is essential for collaboration, maintenance and component lifetime. In this work, we argue that functional package managers provide the tooling to make build environments reproducible in space and time, and we produce a preliminary evaluation to justify this claim. Using historical data, we show that we are able to reproduce build environments of about 7 million Nix packages, and to rebuild 99.94% of the 14 thousand packages from a 6-year-old Nixpkgs revision.
Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.