亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cooperative perception is challenging for safety-critical autonomous driving applications.The errors in the shared position and pose cause an inaccurate relative transform estimation and disrupt the robust mapping of the Ego vehicle. We propose a distributed object-level cooperative perception system called OptiMatch, in which the detected 3D bounding boxes and local state information are shared between the connected vehicles. To correct the noisy relative transform, the local measurements of both connected vehicles (bounding boxes) are utilized, and an optimal transport theory-based algorithm is developed to filter out those objects jointly detected by the vehicles along with their correspondence, constructing an associated co-visible set. A correction transform is estimated from the matched object pairs and further applied to the noisy relative transform, followed by global fusion and dynamic mapping. Experiment results show that robust performance is achieved for different levels of location and heading errors, and the proposed framework outperforms the state-of-the-art benchmark fusion schemes, including early, late, and intermediate fusion, on average precision by a large margin when location and/or heading errors occur.

相關內容

Previous methods solve feature matching and pose estimation using a two-stage process by first finding matches and then estimating the pose. As they ignore the geometric relationships between the two tasks, they focus on either improving the quality of matches or filtering potential outliers, leading to limited efficiency or accuracy. In contrast, we propose an iterative matching and pose estimation framework (IMP) leveraging the geometric connections between the two tasks: a few good matches are enough for a roughly accurate pose estimation; a roughly accurate pose can be used to guide the matching by providing geometric constraints. To this end, we implement a geometry-aware recurrent attention-based module which jointly outputs sparse matches and camera poses. Specifically, for each iteration, we first implicitly embed geometric information into the module via a pose-consistency loss, allowing it to predict geometry-aware matches progressively. Second, we introduce an \textbf{e}fficient IMP, called EIMP, to dynamically discard keypoints without potential matches, avoiding redundant updating and significantly reducing the quadratic time complexity of attention computation in transformers. Experiments on YFCC100m, Scannet, and Aachen Day-Night datasets demonstrate that the proposed method outperforms previous approaches in terms of accuracy and efficiency.

Recent advances in QA pair generation (QAG) have raised interest in applying this technique to the educational field. However, the diversity of QA types remains a challenge despite its contributions to comprehensive learning and assessment of children. In this paper, we propose a QAG framework that enhances QA type diversity by producing different interrogative sentences and implicit/explicit answers. Our framework comprises a QFS-based answer generator, an iterative QA generator, and a relevancy-aware ranker. The two generators aim to expand the number of candidates while covering various types. The ranker trained on the in-context negative samples clarifies the top-N outputs based on the ranking score. Extensive evaluations and detailed analyses demonstrate that our approach outperforms previous state-of-the-art results by significant margins, achieving improved diversity and quality. Our task-oriented processes are consistent with real-world demand, which highlights our system's high applicability.

We present a novel paradigm named Herd's Eye View (HEV) that adopts a global perspective derived from multiple agents to boost decision-making capabilities of reinforcement learning (RL) agents in multi-agent environments, specifically in the context of game AI. The HEV approach utilizes cooperative perception to empower RL agents with a global reasoning ability, enhancing their decision-making. We demonstrate the effectiveness of the HEV within simulated game environments and highlight its superior performance compared to traditional ego-centric perception models. This work contributes to cooperative perception and multi-agent reinforcement learning by offering a more realistic and efficient perspective for global coordination and decision-making within game environments. Moreover, our approach promotes broader AI applications beyond gaming by addressing constraints faced by AI outside of this field. The code is available on GitHub.

Researchers have integrated exploration techniques into multi-agent reinforcement learning (MARL) algorithms, drawing on their remarkable success in deep reinforcement learning. Nonetheless, exploration in MARL presents a more substantial challenge, as agents need to coordinate their efforts in order to achieve comprehensive state coverage. Reaching a unanimous agreement on which kinds of states warrant exploring can be a struggle for agents in this context. We introduce \textbf{M}ulti-agent \textbf{E}xploration based on \textbf{S}ub-state \textbf{E}ntropy (MESE) to address this limitation. This novel approach incentivizes agents to explore states cooperatively by directing them to achieve consensus via an extra team reward. Calculating the additional reward is based on the novelty of the current sub-state that merits cooperative exploration. MESE employs a conditioned entropy approach to select the sub-state, using particle-based entropy estimation to calculate the entropy. MESE is a plug-and-play module that can be seamlessly integrated into most existing MARL algorithms, which makes it a highly effective tool for reinforcement learning. Our experiments demonstrate that MESE can substantially improve the MAPPO's performance on various tasks in the StarCraft multi-agent challenge (SMAC).

With the ever-increasing utilization of natural language processing (NLP), we started to witness over the past few years a significant transformation in our interaction with legal texts. This technology has advanced the analysis and enhanced the understanding of complex legal terminology and contexts. The development of recent large language models (LLMs), particularly ChatGPT, has also introduced a revolutionary contribution to the way that legal texts can be processed and comprehended. In this paper, we present our work on a cooperative-legal question-answering LLM-based chatbot, where we developed a set of legal questions about Palestinian cooperatives, associated with their regulations and compared the auto-generated answers by the chatbot to their correspondences that are designed by a legal expert. To evaluate the proposed chatbot, we have used 50 queries generated by the legal expert and compared the answers produced by the chart to their relevance judgments. Finding demonstrated that an overall accuracy rate of 82% has been achieved when answering the queries, while exhibiting an F1 score equivalent to 79%.

Quality Diversity (QD) algorithms have been proposed to search for a large collection of both diverse and high-performing solutions instead of a single set of local optima. While early QD algorithms view the objective and descriptor functions as black-box functions, novel tools have been introduced to use gradient information to accelerate the search and improve overall performance of those algorithms over continuous input spaces. However a broad range of applications involve discrete spaces, such as drug discovery or image generation. Exploring those spaces is challenging as they are combinatorially large and gradients cannot be used in the same manner as in continuous spaces. We introduce map-elites with a Gradient-Informed Discrete Emitter (ME-GIDE), which extends QD optimisation with differentiable functions over discrete search spaces. ME-GIDE leverages the gradient information of the objective and descriptor functions with respect to its discrete inputs to propose gradient-informed updates that guide the search towards a diverse set of high quality solutions. We evaluate our method on challenging benchmarks including protein design and discrete latent space illumination and find that our method outperforms state-of-the-art QD algorithms in all benchmarks.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

北京阿比特科技有限公司