亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Advances in machine learning (ML) technologies have greatly improved Artificial Intelligence (AI) systems. As a result, AI systems have become ubiquitous, with their application prevalent in virtually all sectors. However, AI systems have prompted ethical concerns, especially as their usage crosses boundaries in sensitive areas such as healthcare, transportation, and security. As a result, users are calling for better AI governance practices in ethical AI systems. Therefore, AI development methods are encouraged to foster these practices. This research analyzes the ECCOLA method for developing ethical and trustworthy AI systems to determine if it enables AI governance in development processes through ethical practices. The results demonstrate that while ECCOLA fully facilitates AI governance in corporate governance practices in all its processes, some of its practices do not fully foster data governance and information governance practices. This indicates that the method can be further improved.

相關內容

人(ren)(ren)工(gong)(gong)(gong)(gong)智(zhi)(zhi)(zhi)能(neng)雜志AI(Artificial Intelligence)是(shi)目前公認的(de)發表該(gai)領域最新(xin)研究成(cheng)(cheng)果的(de)主要國際(ji)論(lun)壇。該(gai)期刊歡迎有關AI廣泛方面的(de)論(lun)文,這(zhe)些論(lun)文構成(cheng)(cheng)了整個(ge)(ge)領域的(de)進步,也歡迎介(jie)紹人(ren)(ren)工(gong)(gong)(gong)(gong)智(zhi)(zhi)(zhi)能(neng)應(ying)用(yong)的(de)論(lun)文,但重(zhong)點應(ying)該(gai)放在新(xin)的(de)和新(xin)穎(ying)的(de)人(ren)(ren)工(gong)(gong)(gong)(gong)智(zhi)(zhi)(zhi)能(neng)方法如何提(ti)高應(ying)用(yong)領域的(de)性(xing)能(neng),而不是(shi)介(jie)紹傳統人(ren)(ren)工(gong)(gong)(gong)(gong)智(zhi)(zhi)(zhi)能(neng)方法的(de)另一個(ge)(ge)應(ying)用(yong)。關于應(ying)用(yong)的(de)論(lun)文應(ying)該(gai)描述一個(ge)(ge)原則性(xing)的(de)解決方案,強調(diao)其新(xin)穎(ying)性(xing),并對(dui)正在開發的(de)人(ren)(ren)工(gong)(gong)(gong)(gong)智(zhi)(zhi)(zhi)能(neng)技(ji)術進行深入的(de)評估。 官網地址:

Artificial Intelligence (AI) is making a significant impact in multiple areas like medical, military, industrial, domestic, law, arts as AI is capable to perform several roles such as managing smart factories, driving autonomous vehicles, creating accurate weather forecasts, detecting cancer and personal assistants, etc. Software testing is the process of putting the software to test for some abnormal behaviour of the software. Software testing is a tedious, laborious and most time-consuming process. Automation tools have been developed that help to automate some activities of the testing process to enhance quality and timely delivery. Over time with the inclusion of continuous integration and continuous delivery (CI/CD) pipeline, automation tools are becoming less effective. The testing community is turning to AI to fill the gap as AI is able to check the code for bugs and errors without any human intervention and in a much faster way than humans. In this study, we aim to recognize the impact of AI technologies on various software testing activities or facets in the STLC. Further, the study aims to recognize and explain some of the biggest challenges software testers face while applying AI to testing. The paper also proposes some key contributions of AI in the future to the domain of software testing.

The rapid development of Machine Learning (ML) has demonstrated superior performance in many areas, such as computer vision, video and speech recognition. It has now been increasingly leveraged in software systems to automate the core tasks. However, how to securely develop the machine learning-based modern software systems (MLBSS) remains a big challenge, for which the insufficient consideration will largely limit its application in safety-critical domains. One concern is that the present MLBSS development tends to be rush, and the latent vulnerabilities and privacy issues exposed to external users and attackers will be largely neglected and hard to be identified. Additionally, machine learning-based software systems exhibit different liabilities towards novel vulnerabilities at different development stages from requirement analysis to system maintenance, due to its inherent limitations from the model and data and the external adversary capabilities. In this work, we consider that security for machine learning-based software systems may arise by inherent system defects or external adversarial attacks, and the secure development practices should be taken throughout the whole lifecycle. While machine learning has become a new threat domain for existing software engineering practices, there is no such review work covering the topic. Overall, we present a holistic review regarding the security for MLBSS, which covers a systematic understanding from a structure review of three distinct aspects in terms of security threats. Moreover, it provides a thorough state-of-the-practice for MLBSS secure development. Finally, we summarise the literature for system security assurance, and motivate the future research directions with open challenges. We anticipate this work provides sufficient discussion and novel insights to incorporate system security engineering for future exploration.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Augmented reality technology is one of the leading technologies in the context of Industry 4.0. The promising potential application of augmented reality in industrial production systems has received much attention, which led to the concept of industrial augmented reality. On the one hand, this technology provides a suitable platform that facilitates the registration of information and access to them to help make decisions and allows concurrent training for the user while executing the production processes. This leads to increased work speed and accuracy of the user as a process operator and consequently offers economic benefits to the companies. Moreover, recent advances in the internet of things, smart sensors, and advanced algorithms have increased the possibility of widespread and more effective use of augmented reality. Currently, many research pieces are being done to expand the application of augmented reality and increase its effectiveness in industrial production processes. This research demonstrates the influence of augmented reality in Industry 4.0 while critically reviewing the industrial augmented reality history. Afterward, the paper discusses the critical role of industrial augmented reality by analyzing some use cases and their prospects. With a systematic analysis, this paper discusses the main future directions for industrial augmented reality applications in industry 4.0. The article investigates various areas of application for this technology and its impact on improving production conditions. Finally, the challenges that this technology faces and its research opportunities are discussed.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

Recommender systems are one of the most successful applications of data mining and machine learning technology in practice. Academic research in the field is historically often based on the matrix completion problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many application domains, however, multiple user-item interactions of different types can be recorded over time. And, a number of recent works have shown that this information can be used to build richer individual user models and to discover additional behavioral patterns that can be leveraged in the recommendation process. In this work we review existing works that consider information from such sequentially-ordered user- item interaction logs in the recommendation process. Based on this review, we propose a categorization of the corresponding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodological approaches when benchmarking what we call sequence-aware recommender systems, and outline open challenges in the area.

北京阿比特科技有限公司