亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Capturing and reconstructing a human actor's motion is important for filmmaking and gaming. Currently, motion capture systems with static cameras are used for pixel-level high-fidelity reconstructions. Such setups are costly, require installation and calibration and, more importantly, confine the user to a predetermined area. In this work, we present a drone-based motion capture system that can alleviate these limitations. We present a complete system implementation and study view planning which is critical for achieving high-quality reconstructions. The main challenge for view planning for a drone-based capture system is that it needs to be performed during motion capture. To address this challenge, we introduce simple geometric primitives and show that they can be used for view planning. Specifically, we introduce Pixel-Per-Area (PPA) as a reconstruction quality proxy and plan views by maximizing the PPA of the faces of a simple geometric shape representing the actor. Through experiments in simulation, we show that PPA is highly correlated with reconstruction quality. We also conduct real-world experiments showing that our system can produce dynamic 3D reconstructions of good quality. We share our code for the simulation experiments in the link: //github.com/Qingyuan-Jiang/view_planning_3dhuman

相關內容

在計算機視覺中, 三維重建是指根據單視圖或者多視圖的圖像重建三維信息的過程. 由于單視頻的信息不完全,因此三維重建需要利用經驗知識. 而多視圖的三維重建(類似人的雙目定位)相對比較容易, 其方法是先對攝像機進行標定, 即計算出攝像機的圖象坐標系與世界坐標系的關系.然后利用多個二維圖象中的信息重建出三維信息。 物體三維重建是計算機輔助幾何設計(CAGD)、計算機圖形學(CG)、計算機動畫、計算機視覺、醫學圖像處理、科學計算和虛擬現實、數字媒體創作等領域的共性科學問題和核心技術。在計算機內生成物體三維表示主要有兩類方法。一類是使用幾何建模軟件通過人機交互生成人為控制下的物體三維幾何模型,另一類是通過一定的手段獲取真實物體的幾何形狀。前者實現技術已經十分成熟,現有若干軟件支持,比如:3DMAX、Maya、AutoCAD、UG等等,它們一般使用具有數學表達式的曲線曲面表示幾何形狀。后者一般稱為三維重建過程,三維重建是指利用二維投影恢復物體三維信息(形狀等)的數學過程和計算機技術,包括數據獲取、預處理、點云拼接和特征分析等步驟。

In the film industry, movie posters have been an essential part of advertising and marketing for many decades, and continue to play a vital role even today in the form of digital posters through online, social media and OTT platforms. Typically, movie posters can effectively promote and communicate the essence of a film, such as its genre, visual style/ tone, vibe and storyline cue/ theme, which are essential to attract potential viewers. Identifying the genres of a movie often has significant practical applications in recommending the film to target audiences. Previous studies on movie genre identification are limited to subtitles, plot synopses, and movie scenes that are mostly accessible after the movie release. Posters usually contain pre-release implicit information to generate mass interest. In this paper, we work for automated multi-label genre identification only from movie poster images, without any aid of additional textual/meta-data information about movies, which is one of the earliest attempts of its kind. Here, we present a deep transformer network with a probabilistic module to identify the movie genres exclusively from the poster. For experimental analysis, we procured 13882 number of posters of 13 genres from the Internet Movie Database (IMDb), where our model performances were encouraging and even outperformed some major contemporary architectures.

Recognizing human actions in video sequences, known as Human Action Recognition (HAR), is a challenging task in pattern recognition. While Convolutional Neural Networks (ConvNets) have shown remarkable success in image recognition, they are not always directly applicable to HAR, as temporal features are critical for accurate classification. In this paper, we propose a novel dynamic PSO-ConvNet model for learning actions in videos, building on our recent work in image recognition. Our approach leverages a framework where the weight vector of each neural network represents the position of a particle in phase space, and particles share their current weight vectors and gradient estimates of the Loss function. To extend our approach to video, we integrate ConvNets with state-of-the-art temporal methods such as Transformer and Recurrent Neural Networks. Our experimental results on the UCF-101 dataset demonstrate substantial improvements of up to 9% in accuracy, which confirms the effectiveness of our proposed method. In addition, we conducted experiments on larger and more variety of datasets including Kinetics-400 and HMDB-51 and obtained preference for Collaborative Learning in comparison with Non-Collaborative Learning (Individual Learning). Overall, our dynamic PSO-ConvNet model provides a promising direction for improving HAR by better capturing the spatio-temporal dynamics of human actions in videos. The code is available at //github.com/leonlha/Video-Action-Recognition-Collaborative-Learning-with-Dynamics-via-PSO-ConvNet-Transformer.

The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis, especially with meta-learning. This systematic review gives a comprehensive overview of few-shot learning in medical imaging. We searched the literature systematically and selected 80 relevant articles published from 2018 to 2023. We clustered the articles based on medical outcomes, such as tumour segmentation, disease classification, and image registration; anatomical structure investigated (i.e. heart, lung, etc.); and the meta-learning method used. For each cluster, we examined the papers' distributions and the results provided by the state-of-the-art. In addition, we identified a generic pipeline shared among all the studies. The review shows that few-shot learning can overcome data scarcity in most outcomes and that meta-learning is a popular choice to perform few-shot learning because it can adapt to new tasks with few labelled samples. In addition, following meta-learning, supervised learning and semi-supervised learning stand out as the predominant techniques employed to tackle few-shot learning challenges in medical imaging and also best performing. Lastly, we observed that the primary application areas predominantly encompass cardiac, pulmonary, and abdominal domains. This systematic review aims to inspire further research to improve medical image analysis and patient care.

There has been a debate about the superiority between vision Transformers and ConvNets, serving as the backbone of computer vision models. Although they are usually considered as two completely different architectures, in this paper, we interpret vision Transformers as ConvNets with dynamic convolutions, which enables us to characterize existing Transformers and dynamic ConvNets in a unified framework and compare their design choices side by side. In addition, our interpretation can also guide the network design as researchers now can consider vision Transformers from the design space of ConvNets and vice versa. We demonstrate such potential through two specific studies. First, we inspect the role of softmax in vision Transformers as the activation function and find it can be replaced by commonly used ConvNets modules, such as ReLU and Layer Normalization, which results in a faster convergence rate and better performance. Second, following the design of depth-wise convolution, we create a corresponding depth-wise vision Transformer that is more efficient with comparable performance. The potential of the proposed unified interpretation is not limited to the given examples and we hope it can inspire the community and give rise to more advanced network architectures.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司